Skip to main content
Log in

Ethylene antagonizes the inhibition of germination in Arabidopsis induced by salinity by modulating the concentration of hydrogen peroxide

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The capacity of plants to achieve successful germination and early seedling establishment under high salinity is crucial for tolerance of plants to salt. The gaseous hormone ethylene has been implicated in modulating salt tolerance, but the detailed role of how ethylene modulates the response of early seedling establishment to salt is unclear. To better understand the role of the ethylene signal transduction pathway during germination and seedling establishment, an ethylene insensitive mutation (ein2-5) and an ethylene sensitive mutation (ctr1-1) of Arabidopsis were analyzed under saline conditions and compared with the wild type plant (Col-0) as control. High salinity (>100 mM NaCl) inhibited and delayed germination. These effects were more severe in the ethylene insensitive mutants (ein2-5) and less severe in the constitutive ethylene sensitive plants (ctr1-1) compared with Col-0 plants. Addition of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or inhibitors of ethylene action implied that ethylene was essential for early seedling establishment under normal and saline conditions. Salt stress increased the endogenous concentration of hydrogen peroxide (H2O2) in germinating seeds and ACC reduced its concentration. Our results suggest that ethylene promotes germination under salinity by modulating the endogenous concentration of H2O2 in germinating seeds. These findings demonstrate that ethylene is involved in regulating germination as an initiator of the process rather than consequence, and that ethylene promotes germination by modulating the endogenous concentration of H2O2 in germinating seeds under salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACC:

1-Aminocyclopropane-1-carboxylic acid

AIB:

Aminoisobutyric acid

CTR:

Constitutive triple response

EIL:

EIN3-like

EIN:

Ethylene insensitive

ERF:

Ethylene-responsive factor

ERS:

Ethylene response sensor

ETR:

Ethylene response

FW:

Fresh weight

H2O2 :

Hydrogen peroxide

PAR:

Photosynthetically active radiation

ROS:

Reactive oxygen species

References

  • Achard P, Cheng H, Grauwe LD, Decat J, Schoutteten H, Moritz T, Straeten DVD, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  PubMed  CAS  Google Scholar 

  • Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243–254

    Google Scholar 

  • Alonso JM, Hirayam T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA 100:2992–2997

    Article  PubMed  CAS  Google Scholar 

  • Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12:1103–1115

    PubMed  CAS  Google Scholar 

  • Bleecker A, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  PubMed  CAS  Google Scholar 

  • Cao YR, Chen SY, Zhang JS (2008) Ethylene signaling regulates salt stress response. Plant Signaling Behav 3:761–763

    Article  Google Scholar 

  • Chang C, Wang B, Shi L, Li Y, Duo L, Zhang W (2010) Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumics sativus L.) by ethylene and glutamate. J Plant Physiol 167:1152–1156

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Etheridge N, Schaller GE (2005) Ethylene signaling transduction. Ann Bot 95:901–915

    Article  PubMed  CAS  Google Scholar 

  • Datta K, Vasquez A, Tu J, Torrizo L, Alam MF, Oliva N, Abrigo E, Khush GS, Datta SK (1998) Constitutive and tissue-specific differential expression of the cry1A(b) gene in transgenic rice plants conferring resistance to rice insect pests. Theor Appl Genet 97:20–30

    Google Scholar 

  • de Jong AJ, Yakimova ET, Kapchina VM, Woltering EJ (2002) A critical role of ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta 214:537–545

    Article  Google Scholar 

  • Dodd GL, Donovan LA (1999) Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. Am J Bot 86:1146–1153

    Article  PubMed  CAS  Google Scholar 

  • Ghassemian M, Nambrara E, Cutler S, Kawaide H, Kamiiya Y, McCourt P (2000) Regulation of abscisic acid signaling by ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126

    PubMed  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Ann Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221–233

    Article  PubMed  CAS  Google Scholar 

  • Jia W, Wang Y, Zhang S, Zhang J (2002) Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J Exp Bot 53:2201–2206

    Article  PubMed  CAS  Google Scholar 

  • Jung JY, Shin R, Schachtman DP (2009) Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 21:607–621

    Article  PubMed  CAS  Google Scholar 

  • Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

    Article  PubMed  CAS  Google Scholar 

  • Khan MA, Ansari R, Gul B, Li W (2009) Dormancy and germination responses of halophyte seeds to the application of ethylene. C R Biol 332:806–815

    Article  PubMed  CAS  Google Scholar 

  • Kieber JJ, Rothenburg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    Article  PubMed  CAS  Google Scholar 

  • Kim HB, Lee H, Oh CJ, Lee HY, Eum HL, Kim HS, Hong YP, Lee Y, Choe S, An CS, Choi SB (2010) Postembryonic seedling lethality in the sterol-deficient Arabidopsis cyp51A2 mutant is partially mediated by the composite action of ethylene and reactive oxygen species. Plant Physiol 152:192–205

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim SG, Park CM (2010) Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol 188:626–637

    Article  PubMed  CAS  Google Scholar 

  • Lei G, Shen M, Li ZG, Zhang B, Duan KX, Wang N, Cao YR, Zhang WK, Ma B, Ling HQ, Chen SY, Zhang JS (2011) EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant, Cell Environ 34:1678–1692

    Article  CAS  Google Scholar 

  • Linkies A, Müller K, Morris K, Turečková V, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822

    Article  PubMed  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398

    Google Scholar 

  • Matilla AJ (2000) Ethylene in seed formation and germination. Seed Sci Res 10:111–126

    CAS  Google Scholar 

  • Misra N, Dwivedi UN (2004) Genotypic difference in salinity tolerance of green gram cultivars. Plant Sci 166:1135–1142

    Google Scholar 

  • Petruzzelli L, Coraggio I, Leubner-Metzger G (2000) Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase. Planta 211:144–149

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Sasdharan R, Voesenek LACJ (2007) Growth control by ethylene: adjusting phenotypes to the environment. J Plant Growth Regul 26:188–200

    Article  CAS  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679–689

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydrogen radicals) and peroxide in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602

    Article  PubMed  CAS  Google Scholar 

  • Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, Ecker JR, Klee HJ, Clark DG (2004) The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol 136:2900–2912

    Article  PubMed  CAS  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101:8827–8832

    Article  PubMed  CAS  Google Scholar 

  • Shin J, Kim K, Kang H, Zulfuarov IS, Bae G, Lee CH, Lee D, Choi G (2009) Phytochromes promote seedling light responses by inhibiting four negative-acting phytochrome-interacting factors. Proc Natl Acad Sci USA 106:7660–7665

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138:2337–2343

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Liu C, Li K, Sun F, Hu H, Li X, Zhao Y, Han C, Zhang W, Duan Y, Liu M, Li X (2007) Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol 64:633–644

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wang T, Li K, Li X (2008) Genetic analysis of involvement of ETR1 in plant response to salt and osmotic stress. Plant Growth Regul 54:261–269

    Article  Google Scholar 

  • Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defense response. Acta Physiol Plant 19:581–589

    Article  CAS  Google Scholar 

  • Yang L, Zu Y, Tang Z (2010) Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environ Exp Bot. doi:10.1016/j.envexpbot.2010.08.006

  • Zapata PJ, Serrano M, Pretel MT, Amoros A, Botella MA (2003) Changes in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination. Plant Sci 164:557–563

    Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Amorós A, Botella MÁ (2004) Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci 167:781–788

    Article  CAS  Google Scholar 

  • Zhong S, Zhao M, Shi T, Shi H, An F, Zhao Q, Guo H (2009) EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc Natl Acad Sci USA 106:21431–21436

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Hongwei Guo for constructive suggestions on the present work and National Natural Science Foundation of China (31000176) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Tang.

Additional information

Communicated by S. Weidner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Wang, J., Zu, Y. et al. Ethylene antagonizes the inhibition of germination in Arabidopsis induced by salinity by modulating the concentration of hydrogen peroxide. Acta Physiol Plant 34, 1895–1904 (2012). https://doi.org/10.1007/s11738-012-0989-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-0989-8

Keywords

Navigation