Skip to main content
Log in

Oxidative stress in greater duckweed (Spirodela polyrhiza) caused by long-term NaCl exposure

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The mechanisms of aquatic plant defense against salinity were studied by long-term exposure of Spirodela polyrhiza (greater duckweed) to NaCl. In this study, the effects of 200 mM NaCl on greater duckweed were evaluated after 6 and 12 days of treatment, while plant growth was measured every day. High concentration of NaCl caused an inhibition of plant growth, reduced in the content of photosynthetic pigments, increased lipid peroxidation, and enhanced the entire antioxidant defense. The responses of five antioxidant enzymes showed that ascorbate peroxidase, guaiacol peroxidase, and superoxide dismutase activities were the most enhanced after NaCl exposure, catalase moderately, and glutathione reductase least. The content of soluble proteins was decreased, while ascorbic acid was drastically increased. In NaCl-treated fronds, the appearance of two NaCl-induced polypeptides with apparent molecular weight of 16 and 21 kDa, as well as the accumulation of two polypeptides with molecular weights 18 and 27 kDa, were observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). NaCl also led to accumulation of the heat shock protein 70 (HSP70) and induced an isoform of the glutamine synthetase (GS1) expression. Our results suggest that in S. polyrhiza, different adaptive mechanisms are involved in counter balancing high doses of a particular toxicant (sodium chloride). The possible application of the examined biomarkers in ecotoxicological research is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham G, Dhar DW (2010) Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport. Protoplasma 240:69–74

    Article  Google Scholar 

  • Adam AL, Bestwick CS, Barna B, Mansfield JW (1995) Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. Phaseolicola. Planta 197:240–249

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Murata N (2008) Salt stress inhibits photosystem II and I in cynobacteria. Photosynth Res 98:529–539

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol 130:1443–1453

    Article  PubMed  CAS  Google Scholar 

  • Appenroth K-J, Krech K, Keresztes A, Fischer W, Koloczek H (2010) Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere 78:216–223

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Basta NT, Tabatabai MA (1985) Determination of potassium, sodium, calcium, and magnesium in plant materials by ion chromatography. Soil Sci Soc Am J 49:76–81

    Article  CAS  Google Scholar 

  • Bauer D, Biehler K, Fock H, Carrayol E, Hirel B, Migge A, Becker TW (1997) A role for cytosolic glutamine synthetase in the remobilization of leaf nitrogen during water stress. Physiol Planta 99:241–248

    Article  CAS  Google Scholar 

  • Beauchamp CO, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    PubMed  CAS  Google Scholar 

  • Binet MT, Stauber JL, Adams MS, Rhodes S, Wech J (2010) Toxicity of brominated volatile organics to freshwater biota. Environ Toxicol Chem 29:1984–1993

    PubMed  CAS  Google Scholar 

  • Booij-James IS, Edelman M, Mattoo AK (2009) Nitric acid donor-mediated inhibition of phosphorylation shows that light-mediated degradation of photosystem II D1 protein and phosphorylation are not tightly linked. Planta 229:1347–1352

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Brown CM, MacKinnon JD, Cockshutt AM, Villareal TA, Campbell DA (2008) Flux capacities and acclimation costs in Trichodesmium from the Gulf of Mexico. Mar Biol 154:413–422

    Article  Google Scholar 

  • Cao T, Xie P, Ni L, Wu A, Zhang BM, Wu S, Smolders AJP (2007) The role of NH4+ toxicity in the decline of the submersed macrophyte Vallisneria natans in lakes of the Yangtze River basin. China Mar. Freshw Res. 58:581–587

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  PubMed  CAS  Google Scholar 

  • Cheng T-S (2011) NaCl-induced responses in giant duckweed. J Aquat Plant Manag (in press)

  • Cheng L-J, Cheng T-S (2011) Oxidative effects and metabolic changes following exposure of greater duckweed (Spirodela polyrhiza) to diethyl phthalate. Aquat Toxicol (in press)

  • Davis BJ (1964) Disc gel electrophoresis II: method and application to human serum proteins. Ann N Y Acad Sci 121:404–427

    Article  PubMed  CAS  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatable race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  • El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Silngla-Pareek SL, Sopory SK (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 245:85–96

    Article  PubMed  CAS  Google Scholar 

  • Fodorpataki L, Bartha L (2008) Differential sensitivity of the photosynthetic apparatus of a freshwater green alga and of duckweed exposed to salinity and heavy metal stress. In: Allen JF, Gantt E, John Golbeck H, Osmond B (eds) Photosynthesis. Energy from the Sun: 14th international congress on photosynthesis. Springer, New York, pp 1451–1454

    Chapter  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evalution of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Gong HM, Tang YL, Wang J, Wen XG, Zhang LX, Lu CM (2008) Characterization of photosystem II in salt-stressed cynobacterial Spirulina platensis cells. Biochim Biophys Acta 1777:488–495

    Article  PubMed  CAS  Google Scholar 

  • Goodman AM, Ganf GG, Dandy GC, Maier HR, Gibbs MS (2010) The response of freshwater plants to salinity pulses. Aquat Bot 93:59–67

    Article  CAS  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayin G (1997) Salt and oxidative stress: similar and specific response and their relation to salt tolerance in citrus. Planta 203:460–469

    Article  PubMed  CAS  Google Scholar 

  • Hart BT, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C, Swadling K (1990) Effects of salinity on river, stream and wetland ecosystems in Victoria. Aus Water Res 24:1103–1117

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:180–198

    Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hou WH, Chen X, Song GL, Wang QH, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    Article  PubMed  CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  PubMed  CAS  Google Scholar 

  • Ireland HE, Harding SJ, Bonwick GA, Jones M, Smith CJ, Williams JHH (2004) Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor. Biomarkers 9:139–155

    Article  Google Scholar 

  • Keppeler EC (2009) Toxicity of sodium chloride and methyl parathion on the macrophyte Lemna minor (Linnaeus, 1753) with respect to frond number and chlorophyll. Biotemas 22(3):27–33

    Google Scholar 

  • Koca H, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia ileracea) chloroplasts. The effect of hydrogen peroxide and paraquat. Biochem J 210:899–903

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembrane. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Malec P, Maleva MG, Prasad MNV, Strzałka K (2010) Responses of Lemna trisulca L. (Duckweed) exposed to low doses of cadmium: thiols, metal binding complexes, and photosynthetic pigments as sensitive biomarkers of ecotoxicity. Protoplasma 240:69–74

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Neumann D, Lichtenberger O, Gunther D, Tschiersch K, Nover L (1994) Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta 194:360–367

    Article  CAS  Google Scholar 

  • Nohzadeh Malakshah S, Habibi Rezaei M, Salekdeh GH (2007) Proteomic reveals new salt responsive proteins associated with rice plasma membrane. Biosci Biotechnol Biochem 71:2144–2154

    Article  PubMed  Google Scholar 

  • Oláh V, Tóth GD, SzöIlôsi E, Kiss T (2008) Comparative study on sensitivity of different physiological properties of Spirodela polyrrhiza (L.) Schleiden to Cr(VI) treatments. Acta Biol Szeged 52:181–182

    Google Scholar 

  • Ortega-Villasante C, Rellan-Alvarez R, Del Campo FF, Carpena-Ruiz RO, Hernandez LE (2005) Cellular damage by cadmium and mercury in Meticago sativa. J Exp Bot 56:2239–2251

    Article  PubMed  CAS  Google Scholar 

  • Potters G, Horemans N, Jansen MAK (2010) The cellular state in plant stress biology—a charging concept. Plant Physiol Biochem 48:292–300

    Article  PubMed  CAS  Google Scholar 

  • Prasad MNV, Malec P, Waloszek A, Bojko M, Strzalka K (2001) Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 16:881–889

    Article  Google Scholar 

  • Rao GG, Rao GR (1981) Pigment composition and chlorophyllase activity in pigeon pea (Cajanus indicus Spreng) and Gingelley (Sesamum indicum L.) under NaCl salinity. Indian J Exp Biol 19:768–770

    CAS  Google Scholar 

  • Riemer DN (1984) Introduction to freshwater vegetation. AVI Publishing, Westport

    Google Scholar 

  • Russo VM, Karmarkar SV (1998) Water extraction of plant tissues for analysis by ion chromatography. Commun Soil Sci Plant Anal 29:245–253

    Article  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sairam RK, Deshmukh PS, Shukala DS (1997) Tolerance to drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J Agron Crop Sci 178:171–178

    Article  CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    Article  PubMed  CAS  Google Scholar 

  • Santos C, Pinto G, Loureiro J, Oliverira H, Costa A (2002) Response of sunflower cells under Na2SO4. I. Osmotic adjustment and nutrient responses and proline metabolism in sunflower cells under Na2SO4 stress. J Plant Nutr Soil Sci 165:366–372

    Article  CAS  Google Scholar 

  • Santos C, Pereira A, Pereira S, Teixeira J (2004) Regulation of glutamine synthetase expression in sunflower cells exposed to salt and osmotic stress. Sci Hort 103:101–111

    Article  CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous in plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis(2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Ramanjulu S, Ramachandra-Kini K, Prakash HS, Shekar-Shetty H, Savithri HS, Sudhakar C (1999) Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci 141:1–9

    Article  CAS  Google Scholar 

  • Sumithra K, Jutur PP, Carmel BD, Reddy AR (2006) Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism. Plant Growth Regul 50:11–22

    Article  CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Envrion Exp Bot 65:270–281

    Article  CAS  Google Scholar 

  • Teixeira J, Fidalgo F (2009) Salt stress affects glutamine synthetase activity and mRNA accumulation on potato plants in an organ-dependent manner. Plant Physiol Biochem 47:807–813

    Article  PubMed  CAS  Google Scholar 

  • Teixeira J, Pereira S, Canovas F, Salema R (2005) Glutamine synthetase of potato (Solanum tuberosium L. cv. Desiree) plants: cell- and organ-specific expression and differential developmental regulation reveal specific roles in nitrogen assimilation and mobilization. J Exp Bot 56:663–671

    Article  PubMed  CAS  Google Scholar 

  • Teixeira J, Pereira S, Queiros F, Fidalgo F (2006) Specific roles of potato glutamine synthetase isoenzymes in callus tissues grown under salinity: molecular and biochemical responses. Plant Cell Tissue Organ Cult 87:1–7

    Article  CAS  Google Scholar 

  • Teller S, Appenroth KJ (1994) The appearance of glutamine synthetase in turions of Spirodela polyrhiza (L.) Schleiden as regulated by blue and red light, nitrate and ammonium. J Exp Bot 45:1219–1226

    Article  CAS  Google Scholar 

  • Tewari KR, Kumar P, Sharma PN (2006) Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223:1145–1153

    Article  PubMed  CAS  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP). J Proteomics 71:391–411

    Article  PubMed  CAS  Google Scholar 

  • Tkalec M, Prebeg T, Roje V, Pevalek-Kozlina B, Ljubesic N (2008) Cadmium-induced responses in duckweed Lemna minor L. Acta Physiol Plant 30:881–890

    Article  CAS  Google Scholar 

  • Upadhyay R, Panda SK (2010) Zinc reduces copper toxicity induced oxidative stress by promoting antioxidant defense in freshly grown aquatic duckweed Spirodela polyrhiza L. J Hazard Mater 175:1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Velikova V, Yordanova I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang W (1990) Literature reviews on duckweed toxicity testing. Environ Res 52:7–22

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Zhang S-H, Wang P-F, Hou J, Li W, Zhang W-J (2008) Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara. Aquat Toxicol 87:88–98

    Article  PubMed  CAS  Google Scholar 

  • Warwick NWM, Bailey PCE (1998) The effect of time of exposure to NaCl on leaf demography and growth for two non-halophytic wetland macrophytes, Potamogeton tricarinatus F. Muell. and A. Benn. ex A. Benn. and Triglochin prucera R. Br. Aquat Bot 62:19–31

    Article  CAS  Google Scholar 

  • Watanabe A, Hamada K, Yokoi H (1994) Biphasic and differential expression of cytosolic glutamine synthetase genes of radish during seed germination and senescence of cotyledons. Plant Mol Biol 26:1807–1817

    Article  PubMed  CAS  Google Scholar 

  • Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  PubMed  CAS  Google Scholar 

  • Yazici I, Turkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ. Exp. Bot 61:49–57

    Article  CAS  Google Scholar 

  • Zhu J-K (2007) Plant salt stress. In: Encyclopedia of Life Sci (ELS). Wiley, Chichester, pp 1–3

Download references

Acknowledgments

This research was funded in partly by a Grant from the Chung-Cheng Agriculture Science and Social Welfare Foundation, Taipei, Taiwan, ROC. The authors thank Dr. Peter Wong (University of Kansans, Manhattan, KS) for the anti-GS antibodies and Drs. T-L Chang and C–C Tsao for their help in manuscript preparations.

Conflict of interest

The author declares that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai-Sheng Cheng.

Additional information

Communicated by J.-H. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, IH., Cheng, KT., Huang, PC. et al. Oxidative stress in greater duckweed (Spirodela polyrhiza) caused by long-term NaCl exposure. Acta Physiol Plant 34, 1165–1176 (2012). https://doi.org/10.1007/s11738-011-0913-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0913-7

Keywords

Navigation