Skip to main content
Log in

Stimulatory and period-specific effect of nitric oxide on in vitro caulogenesis in Albizzia lebbeck (L.) Benth.

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The paper reports stimulatory effect of nitric oxide (NO) on in vitro caulogenesis in Albizzia lebbeck, a tree legume. Exogenously supplied NO donor, sodium nitroprusside (SNP) stimulated shoot differentiation from hypocotyl explants of Albizzia lebbeck, excised from its in vitro seedlings. Potassium ferrocyanide, a structural analog of SNP incapable of releasing NO, did not promote shoot organogenesis. Likewise, metabolic products of NO, NO2 and NO3 , provided as NaNO2 and NaNO3 did not enhance shoot differentiation. The NO scavenger, 2-(4-carboxy-phenyl)-4, 4, 5, 5-tetramethylimideazoline-1-oxyl-3-oxide (cPTIO), supplemented along with SNP, at equimolar concentration, reversed the stimulatory effect of the latter, thus, confirming the role of NO in promotion of in vitro caulogenesis. The transfer of explants cultured on the basal medium (BM) to the same containing SNP and vice versa after different time intervals revealed that for its enhancing effect, SNP was required only during the initial phase (5 days) of culture. Its presence or administration beyond 5 days neither promoted nor inhibited the caulogenic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

cPTIO:

2-(4-carboxy-phenyl)-4, 4, 5, 5 Tetramethylimideazoline-1-oxyl-3-oxide

MB:

Methylene blue

NO:

Nitric oxide

SNP:

Sodium nitroprusside

SPSS:

Statistical package for social sciences

References

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci 172:876–887

    Article  CAS  Google Scholar 

  • Bapat VA, Rao PS (1984) Regulatory factors for in vitro multiplication of sandalwood tree (Santalum album Linn.). I. Shoot bud regeneration and somatic embryogenesis in hypocotyl cultures. Proc Indian Acad Sci 93:19–27

    Google Scholar 

  • Baweja K, Khurana JP, Gharyal-Khurana P (1995) Influence of light on somatic embryogenesis in hypocotyls of Albizzia lebbeck. Curr Sci 68:544–546

    Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G, Jeandroz S, Pugin A, Wendehenne D (2008) Nitric oxide in plants: production and cross-talk with Ca2+ signaling. Mol Plant 1:218–228

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Libourel IG, Reinohl V, Jones RL (2006a) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223:805–812

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Libourel IG, Jones RL (2006b) Nitric oxide reduces seed dormancy in Arabidopsis. J Exp Bot 57:517–526

    Article  PubMed  CAS  Google Scholar 

  • Bogatek R, Dziewanowska K, Lewak S (1991) Hydrogen cyanide and embryonal dormancy in apple seeds. Physiol Plant 83:417–421

    Article  CAS  Google Scholar 

  • Bogatek R, Côme D, Corbineau F, Picard MA, Zarska-Maciejewska B, Lewak S (1999) Sugar metabolism as related to the cyanide-mediated elimination of dormancy in apple embryos. Plant Physiol Biochem 37:577–585

    CAS  Google Scholar 

  • Butler AR, Megson IL (2002) Non-heme iron nitrosyls in biology. Chem Rev 102:1155–1165

    Article  PubMed  CAS  Google Scholar 

  • Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis th al iana suspension cultures. Plant J 24:667–677

    Article  PubMed  CAS  Google Scholar 

  • Cragon JD (1999) Teratogen update: methylene blue. Teratology 60:42–48

    Article  Google Scholar 

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57:471–478

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock T, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212

    Article  PubMed  CAS  Google Scholar 

  • Distéfano AM, García-Mata C, Lamattina L, Laxalt AM (2008) Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. Plant Cell Environ 31:187–194

    Article  PubMed  Google Scholar 

  • Ederli L, Reale L, Madeo L, Ferranti F, Gehring C, Fornaciari M, Romano B, Pasqualini S (2009) NO release by nitric oxide donors in vitro and in planta. Plant Physiol Biochem 47:42–48

    Article  PubMed  CAS  Google Scholar 

  • Floryszak-Wieczorek J, Milczarek G, Arasimowicz M, Ciszewski A (2006) Do nitric oxide donors mimic endogenous NO-related responses in plants? Planta 224:1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Gabaldón C, Ros LVG, Pedreño MA, Barceló AR (2005) Nitric oxide production by the differentiating xylem of Zinnia elegans. New Phytol 165:121–130

    Article  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K et al (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–168

    Article  PubMed  CAS  Google Scholar 

  • Gharyal P, Maheshwari SC (1981) In vitro differentiation of somatic embryoids in a leguminous tree-Albizzia lebbeck L. Naturwissenschaften 68:379–380

    Article  Google Scholar 

  • Gharyal P, Maheshwari SC (1982) In vitro differentiation of plantlets from tissue cultures of Albizzia lebbeck L. Plant Cell Tiss Org Cult 2:49–53

    Article  Google Scholar 

  • Gharyal P, Maheshwari SC (1990) Differentiation in explants from mature leguminous trees. Plant Cell Rep 8:550–553

    Article  Google Scholar 

  • Goldstein S, Russo A, Samuni A (2003) Reactions of PTIO and carboxy-PTIO with *NO, *NO2, and O2*. J Biol Chem 278:7757–7763

    Article  Google Scholar 

  • Grossmann K (1996) A role for cyanide, derived from ethylene biosynthesis, in the development of stress symptoms. Physiol Plant 97:772–775

    Article  CAS  Google Scholar 

  • He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  PubMed  CAS  Google Scholar 

  • Ignarro JS, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    Article  PubMed  CAS  Google Scholar 

  • Jain N, Babbar SB (2002) Gum katira—a cheap gelling agent for plant tissue culture media. Plant Cell Tiss Org Cult 71:223–229

    Article  CAS  Google Scholar 

  • Jain R, Babbar SB (2006) Xanthan gum: an economical substitute for agar in plant tissue culture media. Plant Cell Rep 25:81–84

    Article  PubMed  CAS  Google Scholar 

  • Kalra C, Babbar SB (2010) Nitric oxide promotes in vitro organogenesis in Linum usitatissimum L. Plant Cell Tiss Org Cult 103:353–359

    Article  CAS  Google Scholar 

  • Kasprowicz A, Szubaz A, Volkmann D, Baluška F, Wojtaszek P (2009) Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type-specific manner in root apices. J Exp Bot 60:1605–1617

    Article  PubMed  CAS  Google Scholar 

  • Kim MK, Sommer HE, Bongarten BC, Merkle SA (1997) High-frequency induction of adventitious shoots from hypocotyl segments of Liquidambar stryciflua L by thidiazuron. Plant Cell Rep 16:536–540

    CAS  Google Scholar 

  • Khurana J, Khurana P (2000) Biolistic-mediated DNA delivery into hypocotyls of a leguminous tree—Albizzia lebbeck L.: influence of biological and physical parameters. J Plant Biochem Biotechnol 9:31–34

    CAS  Google Scholar 

  • Khurana A, Khurana JP, Babbar SB (2011) Nitric oxide induces flowering in the duckweed Lemna aequinoctialis Welw. (Syn. L. paucicostata Hegelm.) under noninductive conditions. J Plant Growth Reg. doi:10.1007/s00344-011-9199-7

  • Lanteri ML, Laxalt AM, Lamattina L (2008) Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin-induced adventitious root formation in cucumber. Plant Physiol 147:188–198

    Article  PubMed  CAS  Google Scholar 

  • Leshem YY, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radicals in vegetative stress and senescence of Pisum sativum Linn foliage. J Plant Physiol 148:258–263

    CAS  Google Scholar 

  • Manjunatha G, Raj SN, Shetty NP, Shetty HS (2008) Nitric oxide donor seed priming enhances defense responses and induces resistance against pearl millet downy mildew disease. Pesticide Biochem Physiol 91:1–11

    Article  CAS  Google Scholar 

  • Meeussen JL, Keizer MG, van Riemsdijk WH (1992) Dissolution behavior of iron cyanide (Prussian blue) in contaminated soils. Environ Sci Toxicol 26:1832–1838

    CAS  Google Scholar 

  • Miller MR, Megson IL (2007) Recent developments in nitric oxide donor drugs. Brit J Pharmacol 151:305–321

    Article  CAS  Google Scholar 

  • Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants over expressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photo-oxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953

    Article  PubMed  CAS  Google Scholar 

  • Nahrstedt A (1985) Cyanogenic compounds as protective agents for organisms. Plant Syst Evol 150:35–47

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  PubMed  CAS  Google Scholar 

  • París R, Lamattina L, Casalongué CA (2007) Nitric oxide promotes the wound-healing response of potato leaflets. Plant Physiol Biochem 45:80–86

    Article  PubMed  Google Scholar 

  • Sharma P, Rajam MV (1995) Genotype explant and position effects on organogenesis and somatic embryogenesis in eggplant (Solanum melongena L.). J Exp Bot 46:135–141

    Article  CAS  Google Scholar 

  • Siegień I, Bogatek R (2006) Cyanide action in plants—from toxic to regulatory. Acta Physiol Plant 15:483–498

    Article  Google Scholar 

  • Solomonson LP, Barber MJ (1990) Assimilatory nitrate reductase: functional properties and regulation. Annu Rev Plant Physiol Plant Mol Biol 41:225–253

    Article  CAS  Google Scholar 

  • Smith JM, Arteca RN (2000) Molecular control of ethylene production by cyanide in Arabidopsis thaliana. Physiol Plant 109:180–187

    Article  CAS  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    Article  PubMed  CAS  Google Scholar 

  • Ullrich T, Oberle S, Abate A, Schröder H (1997) Photoactivation of the nitric oxide donor SIN-1. FEBS Lett 406:66–68

    Article  PubMed  CAS  Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signalling in plants. Plant Cell Environ 31:622–631

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Bing R (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for NR-dependent formation of active nitrogen species. Proc Exp Biol Med 225:200–206

    Google Scholar 

  • Zagrobelny M, Bak S, Rasmussen AV, Jorgensen B Naumann CM, Moller BL (2004) Cyanogenic glycosides and plant-insect interactions. Phytochemistry 65:293–330

    Google Scholar 

Download references

Acknowledgments

CK thankfully acknowledges the award of a Senior Research Fellowship by the Council of Scientific and Industrial Research (New Delhi). This work was partially supported by R&D Miscellaneous grant provided to SBB by the University of Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi B. Babbar.

Additional information

Communicated by L. A. Kleczkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalra, C., Babbar, S.B. Stimulatory and period-specific effect of nitric oxide on in vitro caulogenesis in Albizzia lebbeck (L.) Benth.. Acta Physiol Plant 34, 387–392 (2012). https://doi.org/10.1007/s11738-011-0798-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0798-5

Keywords

Navigation