Skip to main content
Log in

Accumulation and translocation of Cd metal and the Cd-induced production of glutathione and phytochelatins in Vicia faba L.

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Translocation of cadmium (Cd) in the tissues of Vicia faba, the water content in biomass, the biomass production, and the glutathione and phytochelatin tissue concentrations were studied and correlated with the plant sensitivity and/or tolerance to Cd. The total concentrations of Cd were determined by inductively coupled plasma/mass spectrometry (ICP-MS), the concentrations of glutathione (GSH) and phytochelatins 2 and 3 (PC2 and PC3) were determined by on-line high performance liquid chromatography/electrospray-ionization tandem mass spectrometry (HPLC–ESI–MS–MS) in the roots and leaves of the sensitive and the tolerant cultivars of V. faba grown in Cd containing nutrient solutions (NS, 0–100 μmol l−1 Cd2+). Both the cultivars of V. faba accumulate a major portion of Cd in the roots and only a minor part of ca. 4% in the leaves. The differences between the cultivars concerning Cd accumulation in leaves were apparent from higher Cd concentrations in NS and the Cd amount in the sensitive cultivar was approximately twice as high. In the roots, the differences between the cultivars in the Cd accumulation were only statistically significant with the highest Cd concentrations in NS, with the tolerant cultivar accumulating about 16% more of Cd compared to the sensitive one. The biomass production of the sensitive cultivar decreased approximately twice as fast with increasing Cd concentration in NS. The biomass water content decreased with increasing Cd concentration in NS in both the cultivars. In general, the GSH concentration did not linearly correlate with Cd accumulation, except for the roots of the sensitive cultivar where it was independent, and was higher in the sensitive cultivar than in the tolerant one in both the leaves and roots. The GSH concentration in leaves was approximately one order of magnitude higher than that in the roots for both the cultivars. The relationships between the PC and Cd concentrations in tissues were found nonlinear. At lower Cd accumulation levels, the PC concentrations followed an increase in the Cd accumulation in both the roots and leaves, whereas at higher Cd accumulations the relations differed between roots and leaves. In the roots, the PC concentrations decreased with increasing Cd accumulation, whereas the PC concentration in the leaves followed the decrease in the Cd accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Cd:

Cadmium

C Cd-leaves :

Cd concentration in the leaves

C Cd-NS :

Cd concentration in the nutrient solution

C Cd-roots :

Cd concentration in the roots

DW:

Dry weight

FW:

Fresh weight

GSH:

Glutathione, γ-Glu-Cys-Gly

HPLC–ESI–MS–MS:

High performance liquid chromatography electrospray-ionization tandem mass spectrometry

ICP-MS:

Inductively coupled plasma/mass spectrometry

MTs:

Metallothioneins

NS:

Nutrient solution

PC, PCs:

Phytochelatin, phytochelatins

PC2:

Phytochelatin 2 (γ-Glu-Cys)2-Gly

PC3:

Phytochelatin 3 (γ-Glu-Cys)3-Gly

R :

Correlation coefficient

References

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York

    Google Scholar 

  • Beck A, Lendzian K, Oven M, Christmann A, Grill E (2003) Phytochelatin synthase catalyzes key step in turnover of glutathione conjugates. Phytochemistry 62:423–431

    Article  PubMed  CAS  Google Scholar 

  • Béraud E, Cotelle S, Leroy P, Férard JF (2007) Genotoxic effects and induction of phytochelatins in the presence of Cd in Vicia faba roots. Mutat Res 633:112–116

    PubMed  Google Scholar 

  • Cabrera C, Ortega E, Lorenzo ML, Lopez MC (1998) Cd contamination of vegetable crops, farmlands, and irrigation waters. Rev Environ Contam Toxicol 154:55–81

    PubMed  CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1981) Cd uptake kinetics in intact soybean plants. Plant Physiol 68:835–839

    Article  PubMed  CAS  Google Scholar 

  • Cieslinski G, Nielsen GH, Hogue EJ (1996) Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on Cd bioaccumulation. Plant Soil 180:267–276

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to Cd in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Ederli L, Reale L, Ferranti F, Pasqualini S (2004) Responses induced by high concentration of Cd in Phragmites australis roots. Physiol Plant 121:66–74

    Article  PubMed  CAS  Google Scholar 

  • El Zohri M, Čabala R, Frank H (2005) Quantification of phytochelatins in plants by reversed-phase HPLC–ESI–MS–MS. Anal Bioanal Chem 382:1871–1876

    Article  PubMed  CAS  Google Scholar 

  • Gorinova N, Nedkovska M, Todorovska E, Simova-Stoilova L, Stoyanova Z, Georgieva K, Demirevska-Kepova K, Atanasov A, Herzig R (2007) Improved phytoaccumulation of Cd by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to Cd toxicity. Environ Pollut 145:161–170

    Article  PubMed  CAS  Google Scholar 

  • Greger M, Brammer E, Lindberg S, Larsson G, Idestam-Almquist J (1991) Uptake and physiological effects of Cd in sugar beet (Beta vulgaris) related to mineral provision. J Exp Bot 42:729–737

    Article  CAS  Google Scholar 

  • Haag-Kerwer A, Schäfe HJ, Heiss S, Walter C, Rausch T (1999) Cd exposure in Brassica juncea caused a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot 50:1827–1835

    Article  CAS  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV (1998) Characterization of Cd binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol 116:1413–1420

    Article  PubMed  CAS  Google Scholar 

  • Hernández LE, Cooke DT (1997) Modification of the root plasma membrane lipid composition of Cd treated Pisum sativum. J Exp Bot 48:1375–1381

    Article  Google Scholar 

  • Howden R, Goldsborough PB, Andersen CD, Cobett CS (1995) Cd-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Jones JRE (1939) The relation between the electrolytic solution pressures of the metals and their toxicity to the stickleback (Gasterosteus aculeatus L.). J Exp Biol 16:425–437

    CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Knecht JA, van Dillen M, Koevoets PLM, Schat H, Verkeij JAC, Ernst WHO (1994) Phytochelatins in Cd-sensitive and Cd-tolerant Silene vulgaris. Plant Physiol 104:255–261

    PubMed  Google Scholar 

  • Landberg T, Greger M (2004) No phytochelatin (PC2 and PC3) detected in Salix viminalis. Physiol Plant 121:481–487

    Article  CAS  Google Scholar 

  • Li YM, Chaney RL, Schneiter AA, Miller JF (1995) Screening for low grain Cd phenotypes in sunflower, durum wheat and flax. Crop Sci 35:137–141

    Article  Google Scholar 

  • Liu WJ, Zhu YG, Smith FA, Smith SE (2004) Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J Exp Bot 55:1707–1713

    Article  PubMed  CAS  Google Scholar 

  • Liu CP, Shen ZG, Li XD (2007) Accumulation and detoxification of Cd in Brassica pekinensis and B. chinensis. Biol Plant 51:116–120

    Article  CAS  Google Scholar 

  • Loscos J, Naya L, Ramos J, Clemente MR, Matamoros MA, Becana M (2006) A reassessment of substrate specificity and activation of phytochelatin synthases from model plants by physiologically relevant metals. Plant Physiol 140:1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Riuz RO (1997) Distribution of Cd in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 48:123–128

    Article  CAS  Google Scholar 

  • Maier EA, Matthews RD, McDowell JA, Walden RR, Ahner BA (2003) Environmental Cd levels increase phytochelatin and glutathione in lettuce grown in a chelator-buffered nutrient solution. J Environ Qual 32:1356–1364

    Article  PubMed  CAS  Google Scholar 

  • Martinka M, Lux A (2006) Intraspecific variation of Silene dioica L. in uptake and translocation of Cd related to endodermal development. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology. Advances and topical issues, vol III, 1st ed. edn. GSB, UK, pp 312–316

    Google Scholar 

  • Mathys W (1973) Vergleichende Untersuchungen der Zinkaufnahme von resistent und sensitiven Populationen von Agrostis tenuis Sibth. Flora Jena 162:492–499

    CAS  Google Scholar 

  • Mathys W (1975) Enzymes of heavy metal-resistant and nonresistant populations of Silene cucubalus and their interactions with some heavy metals in vitro and in vivo. Physiol Plant 33:161–165

    Article  CAS  Google Scholar 

  • Meister A (1995) Glutathione biosynthesis and its inhibition. Method Enzymol 251:3–7

    Article  CAS  Google Scholar 

  • Noctor G, Strohm M, Jouanin L, Kunert KJ, Foyer CH, Rennenberg H (1996) Synthesis of glutathione in leaves of transgenic poplar overexpressing γ-glutamylcysteine synthetase. Plant Physiol 11:1071–1078

    Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    Article  CAS  Google Scholar 

  • Oven M, Raith K, Neubert RHH, Kutchan TM, Zenk MH (2001) Homo-phytochelatins are synthesized in response to Cd in azuky beans. Plant Physiol 126:1275–1280

    Article  PubMed  CAS  Google Scholar 

  • Penner GA, Clark J, Bezte LZ, Lisle D (1995) Identification of RAPD markers linked to a gene governing Cd uptake in durum wheat. Genome 38:543–547

    Article  PubMed  CAS  Google Scholar 

  • Persson DP, Hansen TH, Holm PE, Schjoerring JK, Hansen HCB, Nielsen J, Cakmak I, Husted S (2006) Multi-elemental speciation analysis of barley genotypes differing in tolerance to Cd toxicity using SEC-ICP-MS and ESI-TOF-MS. J Anal Atom Spectrom 21:996–1005

    Article  CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, Sanita di Toppi L, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobaco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    Google Scholar 

  • Poschenrieder C, Gunsé B, Barceló J (1989) Influence of Cd on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. J Plant Physiol 90:1365–1371

    Article  CAS  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Pérez-Rentomé C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to Cd and alternatively spliced variants. Plant Physiol 143:1110–1118

    Article  PubMed  CAS  Google Scholar 

  • Ric De Voss CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    Article  Google Scholar 

  • Rodecap KD, Tingey DT, Tibbs JH (1981) Cd-induced ethylene production in bean plant. Z Pflanzenphysiol 105:65–74

    CAS  Google Scholar 

  • Ruegsegger A, Brunold C (1992) Effect of Cd on ‘y-glutamylcysteine synthesis in maize seedlings. Plant Physiol 99:428–433

    Article  PubMed  CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to Cd in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Slováková L, Klecová-Šimonová E, Henselová M, Hudák J (2007) Antioxidant enzymes of tolerant (Brassica juncea L.) and susceptible [Vigna radiata (L.) Wilczek] plants to Cd. In: Bláha L (ed) Influence of abiotic and biotic stressors to property of plants 2007. Proceedings VÚRV v.v.i., Prague-Ruzyne, pp 355–362

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    Article  PubMed  Google Scholar 

  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to Cd stress in Cuscuta reflexa—an angiospermic parasite. J Plant Physiol 161:665–674

    Article  PubMed  CAS  Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Mol Biol 41:553–575

    Article  CAS  Google Scholar 

  • Sun Q, Wang XR, Ding SM, Yuan XF (2005) Effects of interaction between Cd and plumbum on phytochelatins and glutathione production in wheat (Triticum aestivum L.). J Integr Plant Biol (Acta Bot Sin) 47:435–442

    Google Scholar 

  • Szalai G, Janda T, Galan-Goldhirsh A, Páldi E (2002) Effect of Cd treatment on phytochelatin synthesis in maize. Acta Biol Szeged 46:121–122

    Google Scholar 

  • Tsyganov VE, Belimov AA, Borisov AY, Safronova VI, Georgi M, Dietz KJ, Tikhonovich IA (2007) A chemically induced new pea (Pisum sativum) mutant SGECdt with increased tolerance to, and accumulation of, Cd. Ann Bot 99:227–237

    Article  PubMed  CAS  Google Scholar 

  • Van Bruwaene R, Kirchmann R, Impens R (1984) Cd contamination in agriculture and zootechnology. Experientia 40:43–52

    Article  PubMed  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. J Biol Chem 275:31451–31459

    Article  PubMed  CAS  Google Scholar 

  • Vázqez S, Goldsbrough P, Carpena RO (2009) Comparative analysis of the contribution of phytochelatins to Cd and arsenic tolerance in soybean and white lupin. Plant Physiol Biochem 47:63–67

    Article  Google Scholar 

  • Villalobos-Pietrini R, Flores-Marquez AR, Gomez-Arroyo S (1994) Cytogenetic effects in Vicia faba of the polluted water from rivers of the Tlaxcala hydrological system, Mexico. Rev Int Contam Ambient 10:83–88

    Google Scholar 

  • Yen TY, Villa JA, DeWitt JG (1999) Analysis of phytochelatin–Cd complexes from plant tissue culture using nano-electrospray ionization tandem mass spectrometry and capillary liquid chromatography/electrospray ionization tandem mass spectrometry. J Mass Spectrom 34:930–941

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of Cd uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

R. Čabala would like to acknowledge the research project VZ MSM 0021620857 from the Ministry of Education, Youth and Sports of the Czech Republic. L’. Slováková gratefully acknowledges a partial financial support from the grants of the Slovak grant agencies VEGA No. 1/4354/07, COST 0004-06 APVV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radomír Čabala.

Additional information

Communicated by J. Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čabala, R., Slováková, L., El Zohri, M. et al. Accumulation and translocation of Cd metal and the Cd-induced production of glutathione and phytochelatins in Vicia faba L.. Acta Physiol Plant 33, 1239–1248 (2011). https://doi.org/10.1007/s11738-010-0653-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0653-0

Keywords

Navigation