Skip to main content
Log in

Physiological responses of two Jerusalem artichoke cultivars to drought stress induced by polyethylene glycol

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Physiological responses of two Jerusalem artichoke (Helianthus tuberosus L.) cultivars with different drought sensitivity to drought stress induced by polyethylene glycol (PEG) 6000 were investigated by characterizing water status, membrane lipid peroxidation, key antioxidant enzymes activity, and proline accumulation. It was observed that the drought-tolerant Jerusalem artichoke cv. Xiuyan maintained a relatively higher water status than the drought-sensitive cv. Yulin upon drought treatments. Meanwhile, lower levels of malondialdehyde (MDA) as well as higher levels of free proline occurred in cv. Xiuyan after 36 h drought treatments. Moreover, the activities of catalase (CAT) and superoxide dismutase (SOD) in cv. Xiuyan were higher than cv. Yulin after drought stress. These results indicated that drought sensitivities actually differ between Jerusalem artichoke cv. Xiuyan and cv. Yulin, and the cv. Xiuyan was more tolerant to drought stress caused by polyethylene glycol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed CB, Rouina BB, Sensoy S, Boukhris M, Abdallah FB (2009) Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environ Exp Bot 67:345–352

    Article  Google Scholar 

  • Ain-Lhout F, Zunzunegui M, Diaz Barradas MC, Tirado R, Clavijo A, Garcia Novo F (2001) Comparison of proline accumulation in two mediterranean shrubs subjected to natural and experimental water deficit. Plant Soil 230:175–183

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010) Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regul 60:51–59

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare LD (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • De Ronde JA, Cress WA, Kruger GHJ, Strasser RJ, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224

    Article  PubMed  Google Scholar 

  • Efeoglu B, Ekmekci Y, Cicek N (2009) Physiological response of three maize cultivars to drought stress and recovery. S Afr J Bot 75:34–42

    Article  Google Scholar 

  • Giannopolities CH, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC (1994) Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolics implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Heath RN, Packer H (1968) Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidan A, Jaoua L, Savoure A, Jaoua S (2005) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746–752

    Article  CAS  Google Scholar 

  • Kays SJ, Nottingham ST (2007) Biology and chemistry of Jerusalem Artichoke: Helianthus tuberosus L. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kim TH, Lee BR, Jung WJ, Kim KY, Avice JC, Qurry A (2004) De novo protein synthesis in relation to ammonia and proline accumulation in water stressed white clover. Funct Plant Biol 31:847–855

    Article  CAS  Google Scholar 

  • Lee BR, Jin YL, Avice JC, Cliquet JB, Qurry A, Kim TH (2009) Increased proline loading to phloem and its effects on nitrogen uptake and assimilation in water-stressed white clover (Trifolium repens). New Phytol 182:654–663

    Article  CAS  PubMed  Google Scholar 

  • Loggini B, Scartazza A, Brugnoli E, Navazari-Izzo F (1999) Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119:1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Long XH, Chi JH, Liu L, Li Q, Liu ZP (2009) Effect of seawater stress on physiological and biochemical response of five Jerusalem Artichoke ecotypes. Pedosphere 19:208–216

    Article  CAS  Google Scholar 

  • Matysik J, Alia, Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Meijer WJM, Mathijssen EWJM (1993) Experimental and simulated production of inulin by chicory and Jerusalem artichoke. Ind Crops Prod 1:175–183

    Article  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    Article  CAS  Google Scholar 

  • Pereira GIG, Molina SMG, Lea PJ, Azevedo RA (2002) Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 239:123–132

    Article  CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Saxena DC (2000) Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biol Plant 43:245–251

    Article  CAS  Google Scholar 

  • Sanchez-Rodriguez E, Rubio-Wilhelmi M, Cervilla LM, Blasco B, Rios JJ, Rosales MA, Romero L, Ruiz JM (2010) Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci 178:30–40

    Article  CAS  Google Scholar 

  • Schorr-Galindo S, Guiraud JP (1997) Sugar potential of different Jerusalem artichoke cultivars according to harvest. Bioresour Technol 60:15–20

    Article  CAS  Google Scholar 

  • Simova-Stoilova L, Demirevska K, Petrova T, Tsenov N, Feller U (2009) Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticum aestivum L.) varieties subjected to long-term field drought. Plant Growth Regul 58:107–117

    Article  CAS  Google Scholar 

  • Singh BK, Sharma SR, Singh B (2010) Antioxidant enzymes in cabbage: variability and inheritance of superoxide dismutase, peroxidase and catalase. Sci Hortic 124:9–13

    Article  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Swanton CJ, Cavers PB, Clements DR, Moore MJ (1992) The biology of Canadian weeds. 101. Helianthus tuberosus L. Can J Plant Sci 72:1367–1382

    Google Scholar 

  • Van Rensburg L, Kruger GHJ (1994) Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L. J Plant Physiol 143:730–737

    Google Scholar 

  • Venkamp JH, Lampe JEM, Koot JTM (1989) Organic acids as sources of drought induced proline synthesis in field bean plants, Vicia faba L. J Plant Physiol 133:654–659

    Google Scholar 

  • Wang CQ, Li RC (2008) Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress. Acta Physiol Plant 30:841–847

    Article  CAS  Google Scholar 

  • Wu FZ, Bao WK, Li FL, Wu N (2008) Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environ Exp Bot 63:248–255

    Article  CAS  Google Scholar 

  • Xiao XW, Yang F, Zhang S, Korpelainen H, Li CY (2009) Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiol Plant 136:150–168

    Article  CAS  PubMed  Google Scholar 

  • Xue YF, Liu ZP (2008) Antioxidant enzymes and physiological characteristics in two Jerusalem artichoke cultivars under salt stress. Russ J Plant Physiol 55:776–781

    Article  CAS  Google Scholar 

  • Zhang JX, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    CAS  Google Scholar 

  • Zhao HJ, Tan JF (2005) Role of calcium ion in protection against heat and high irradiance stress-induced oxidative damage to photosynthesis of wheat leaves. Photosynthetica 43:473–476

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. Zhenle Yang and Mingfeng Yang for critically reading and improving the manuscript. This work was supported by Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-G-035 and KSCX2-YW-G-027-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihua Shen.

Additional information

Communicated by J. Ueda.

M. Zhang and Q. Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Chen, Q. & Shen, S. Physiological responses of two Jerusalem artichoke cultivars to drought stress induced by polyethylene glycol. Acta Physiol Plant 33, 313–318 (2011). https://doi.org/10.1007/s11738-010-0549-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0549-z

Keywords

Navigation