Skip to main content
Log in

Exogenous spermidine alters in different way membrane permeability and lipid peroxidation in water stressed barley leaves

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In order to see whether polyamines will modify membrane functioning in the water stressed plants, barley (Hordeum vulgare) seedlings were treated with spermidine (Spd) prior to dehydration and then the stress-evoked changes in membrane permeability (i.e. in electrolyte leakage from leaves) and lipid peroxidation (indicated by modifications of the malondialdehyde (MDA) level, and of the lipoxygenase (LOX) activity) were followed. The Spd treatement lowered injury index in plants subjected to water deficit, although it slightly increased the stress-promoted LOX activity and increased the MDA level in the studied leaves. Presented results confirm that spermidine stabilizes plant membranes under water stress conditions. However, this effect does not seem to be associated with the Spd-induced modifications in the lipid peroxidation activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagni N., Torrigiani P. 1992. Polyamines: A new class of growth substances. — In Progress in Plant Growth Regulation (C.M. Karssen, L.C. van Loon and D. Vreugdenhil, eds). Pp. 264–275. Kulver Academic Publishers, Dordrecht. ISBN 0-444-41576-3.

    Google Scholar 

  • Besford R.T., Richardson J.L., Campos A.F., Tiburcio A.F. 1993. Effect of polyamines in stabilization of molecular complexes of thylakoid membranes of osmotically stressed oat leaves. Planta 189: 201–206.

    Article  CAS  Google Scholar 

  • Bigwood T., Read G. 1989. Pseudo malonaldehyde activity in the thiobarbituric acid test. Free Radic. Res. Commun. 6: 387–392.

    PubMed  CAS  Google Scholar 

  • Biondi S., Scaramagli S., Capitani F., Altamura M.M., Torrigiani P. 2001. Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines, and inhibits shoot formation in tobacco thin layers. J. Exp. Bot. 52: 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Borrell A., Carbonell R., Farras R., Puig-Parellada P., Tiburcio A.F. 1997. Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiol. Plant. 99: 385–390.

    Article  CAS  Google Scholar 

  • Bors N., Langebartels C., Mitchel C., Sanderman H. 1989. Polyamines as radical scavengers and protectants against ozone damage. Phytochem. 28: 1589–1595.

    Article  CAS  Google Scholar 

  • Bouchereau A., Aziz A., Larher F., Martin-Tanguy J. 1999. Polyamines and environmental challenges: recent development. Plant Science 140: 103–125.

    Article  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Bratton D.L. 1994. Polyamine inhibition of transbilayer movements of plasma membrane phospholipids in the erythrocyte ghost. 1994. J. Biol. Chem. 269: 22517–22523.

    CAS  Google Scholar 

  • Brggemann L.I., Pottosin I.I., Schnknecht G. 1998. Cytoplasmic polyamines block the fast-activating vacuolar cation channels. Plant J. 16: 101–105.

    Article  Google Scholar 

  • Chattopadhayay M.K., Tiwari B.S., Chattopadhayay G., Bose A., Sengupta D.N., Ghosh B. 2002. Protective role of exogenous polyamines on salinity-stressed rice Oriza sativa) plants. Physiol. Plant. 116: 192–199.

    Article  PubMed  CAS  Google Scholar 

  • CreeIman R.A., Mullet J.E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 355–381.

    Article  Google Scholar 

  • Dhindsa R.S., Matowe W. 1981. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J. Exp. Bot. 32: 79–91.

    Article  CAS  Google Scholar 

  • Egert M., Tevini M. 2002. Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Alium schoenoprasum). Env. Exp. Bot. 48: 43–49.

    Article  CAS  Google Scholar 

  • Flint H.Z., Boyce B.R., Brattie D.J. 1967. Index of injury — a useful expression of freezing injury of plants tissues as determined by electric conductivity method. Can. J. Plant Sci. 47: 229–239.

    Article  Google Scholar 

  • Galliard T. 1980. Degradation of acyl lipids: hydrolytic and oxidative enzymes, — in Biochemistry of Plants. A Comprehensive Treatise. (K. Stumpf, ed.), vol. 4, pp. 85–116, Academic Press, New York.

    Google Scholar 

  • Galston A.W., Kaur-Sawhney R. 1995. Polyamines as endogenous growth regulators. — In Plant hormones: Physiology, Biochemistry and Molecular Biology, 2nd Ed. (P.J. Davies, ed.), pp. 158–178. Kulver Academic Publishers, Dordrecht. ISBN 0-7923-2984-8.

    Google Scholar 

  • Gniazdowska-Skoczek H., Krzywaski Z. Kubi J. 1994. The influence of exogenous spermidine on polysomes and RNase activity in wheat leaves under water stress conditions. Acta Soc. Bot. Pol. 63: 25–28.

    CAS  Google Scholar 

  • Hildebrand D.F. 1989. Lipoxygenases. Plant Physiol. 76: 249–253.

    Article  CAS  Google Scholar 

  • Kacperska A., Kubacka-Zbalska M. 1989. Formation of stress ethylene depends both on ACC synthesis and on the activity of free radical-generating system. Physiol. Plant. 77: 231–237.

    Article  CAS  Google Scholar 

  • Kakkar R.K., Sawhney V.K. 2002. Polyamine research in plants — a changing perspective. Physiol. Plant. 116: 281–292.

    Article  CAS  Google Scholar 

  • Kikugawa K., Kojima T., Kosugi H. 1990. Major thiobarbituric acid-reactive substance of liver homogenate are alkadieanals. Free Radic. Res. Commun. 8: 107–113.

    PubMed  CAS  Google Scholar 

  • Kubi J., Skoczek H., Krzywaski Z. 1991. Exogenous polyamines alter the activity of proteases, RNases and membrane permeability in wheat leaves under water stress conditions. Acta Physiol. Plant. 13: 139–146.

    Google Scholar 

  • Lester G.E., Stein E. 1993. Plasma membrane physicochemical changes during maturation and postharvest storage of muskmelon fruit. J. Am. Soc. Hort. Sci. 118: 223–227.

    CAS  Google Scholar 

  • Lester G.E. 2000. Polyamines and their cellular anti-senescence properties in honey dew muskmelon fruit. Plant Science 160: 105–112.

    Article  CAS  PubMed  Google Scholar 

  • Porta H., Rocha-Sosa M. 2002. Plant Lipoxygenases. Physiological and molecular features. Plant Physiol. 130: 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Roberts D.R., Dumdroff E.B., Thompson J.E. 1986. Exogenous polyamines alter membrane fluidity in been leaves: a basic potential misinterpretation of their physiological role. Planta 167: 395–401.

    Article  CAS  Google Scholar 

  • Rosahal S. 1996. Lipoxygenases in plants — their role in development and stress responses. Z. Naturforsch. 51c: 123–138.

    Google Scholar 

  • Siedow J.N. 1991. Plant lipoxygenase: structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 145–188.

    Article  CAS  Google Scholar 

  • Slocum R.D., Kaur-Sawhney R., Galston A.W. 1984. The physiology and biochemistry of polyamines in higher plants. Arch. Biochem. Biophys. 235: 283–303.

    Article  PubMed  CAS  Google Scholar 

  • Smith T.A. 1985. Polyamines. Ann. Rev. Plant Physiol. 36: 117–143.

    CAS  Google Scholar 

  • Tassoni A., Antognoni F., Battistini M.L., Sanvido O., Bagni N. 1998. Characterization of spermidine binding to solubilized plasma membrane proteins from zucchini hypocotyls. Plant Physiol. 117: 971–077.

    Article  CAS  PubMed  Google Scholar 

  • Tassoni A., Napier R.M., Franceschetti M., Venis M.A., Bagni N. 2002. Spermidine-binding proteins. Purification and expression analysis in maize. Plant Physiol. 128: 1303–1312.

    Article  PubMed  CAS  Google Scholar 

  • Thompson J.E., Legge R.L., Barber R.F. 1987. The role of free radicals in senescing and wounding. New Phytol. 105: 317–344.

    Article  CAS  Google Scholar 

  • Tiburcio A.F., Kaur-Sawhney R., Galston A.W. 1990. Polyamine metabolism of plants, in: B.J. Miflin P.J. Lea (eds.), The Biochemistry of Plants, vol. 16, Academic Press, New York, pp. 283–325.

    Google Scholar 

  • Walters D., Cowley T., Mitchell A. 2002. Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. J. Exp. Bot. 53: 747–756.

    Article  PubMed  CAS  Google Scholar 

  • Weatherley P.E. 1950. Studies in water relations of cotton plants. I. The field measurement of water deficits in leaves. New Phytol. 49: 81–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubi, J. Exogenous spermidine alters in different way membrane permeability and lipid peroxidation in water stressed barley leaves. Acta Physiol Plant 28, 27–33 (2006). https://doi.org/10.1007/s11738-006-0065-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-006-0065-3

Key words

Navigation