Skip to main content
Log in

Cell architecture during gametophytic and embryogenic microspore development in Brassica napus L.

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In this work, the cell architecture of the microspore following both gametophytic and embryogenic developmental pathways in vitro was compared with the gametophytic development in vivo in Brassica napus, at both light and electron microscopy level. The microspore reprogramming to embryogenesis involves defined changes affecting cell activities and structural organization which can be considered as markers of the microspore embryogenic pathway, but less is known about others developmental programmes followed by the microspore in vitro after both, inductive and non-inductive conditions. Low-temperature processing of the samples, cytochemical and immunocytochemical approaches to identify various cell components were performed. Differences in specific cellular features such as cellular size and shape, nuclear architecture, starch accumulation, presence of vacuoles and ribosomal population were studied to characterize sequential stages of microspore embryogenesis and other pathways occurring in vitro. The presence of abundant starch grains in a defined cytoplasmic region appeared as a specific feature of the in vitro gametophytic development, as well as of the non-induced microspores of in vitro cultures under embryogenic-inductive conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baluska F., Wojtaszek P., Volkmann D., Barlow P. 2003. The architecture of polarized cell growth: the unique status of elongating plant cells. Bioessays, 25: 569–576.

    Article  PubMed  CAS  Google Scholar 

  • Bárány I., González-Melendi P., Fadón B., Mitykó J., Risueno M. C., Testillano. P. S. 2005. Microspore-derived embryogenesis in Capsicum annuum L.: subcellular rearrangements through development. Biol. Cell, 97: 709–722.

    Article  PubMed  CAS  Google Scholar 

  • Chupeau Y., Caboche M., Henry Y. 1998. Androgenesis and haploid plants. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Cordewener J.H.G., Hause G., Görgen E., Busink R., Hause B., Dons H.J.M., van Lammeren A., Van Lookeren-Campagne M.M., Pechan P. 1995. Changes in synthesis and localization of members of the 70-kDa class of heat-shock proteins accompany the induction of embryogenesis in Brassica napus L. microspores. Planta, 196: 747–755.

    Article  CAS  Google Scholar 

  • Custers J.M., Cordewener J.H.G., Nöllen Y., Dons J. J., van Lookeren Campagne M.M.. 1994. Temperature controls both gametophytic and EMBR YOGENIC development in microspore cultures of Brassica napus. Plant Cell Rep., 13: 267–271.

    Article  CAS  Google Scholar 

  • Eilat D., Fischel R. 1991. Recurrent utilization of genetic elements in V regions of antinucleic acid antibodies from autoimmune mice. J. Immunol., 147: 361–368.

    PubMed  CAS  Google Scholar 

  • Franchi G.G., Bellani L, Nepi M, Pacini E. 1996. Types of carbohydrate reserves in pollen: localization, systematic distribution and ecophysiological significance. Flora, 191: 143–159.

    Google Scholar 

  • González-Melendi P., Testillano P.S., Ahmadian P., Fadón B., Vicente O., Risueno M.C. 1995. In situ characterization of the late vacuolate microspore as a convenient stage to induce embryogenesis in Capsicum. Protoplasma, 187: 60–71.

    Article  Google Scholar 

  • González-Melendi P., Testillano P.S., Préstamo G., Fadon B., Risueno M.C. 1996. Cellular characterization of key developmental stages for pollen embryogenesis induction. Int. J. Dev. Biol., 1: 127S-128S.

    PubMed  Google Scholar 

  • Hause G., Hause B. 1996. Induction of embryogenesis in isolated microspores and pollen of Brassica napus L. PhD thesis. Wageningen Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Indrianto A., Barinova I., Touraev A., Heberle-Bors E. 2001. Tracking individual wheat microspores in vitro: identification of embryogenic microspores and body axis formation in the embryo. Planta, 212: 163–174.

    Article  PubMed  CAS  Google Scholar 

  • Mena C.G., Testillano P.S., González-Melendi P., Gorab E., Risueno M.C. 1994. Inmunoelectron microscopy detection of RNA combined with nucleic acids cytochemistry in plant nucleoli. Exp. Cell Res., 212: 393–408.

    Article  PubMed  CAS  Google Scholar 

  • Pacini E. 1996. Types and meaning of pollen carbohydrate reserves. Sex. Plant Reprod., 9: 362–366.

    Article  CAS  Google Scholar 

  • Pechan P.M., Keller W.A. 1988. Identification of potentially embryogenic microspores in Brassica napus. Physiol. Plant., 74: 377–384.

    Article  Google Scholar 

  • Raghavan V. 2000. Developmental biology of flowering plants, Springer-Verlag, New York.

    Google Scholar 

  • Ramírez C., Testillano P. S., Castillo A. M., Vallés M.P., Coronado M.J., Cistué L., Risueno M.C. 2001. The early microspore embryogenesis pathway in barley is accompanied by concrete ultrastructural and expression changes. Inter. J. Dev. Biol., 45 Supp. 1: 57–58

    Google Scholar 

  • Risueno, M.C., Medina, F.J. 1986. The nucleolar structure in plant cells. Cell Biol. Rev., 7: 1–140.

    CAS  Google Scholar 

  • Samaj J., Baluska F., Hirt H. 2004. From signal to cell polarity: mitogen-activated protein kinases as sensors and effectors of cytoskeleton dynamicity. J. Exp. Bot., 55: 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Seguí-Simarro J.M. 2001. Embryogenesis induction in pollen: Cellular characterization and expression of stress proteins. PhD doctoral thesis. Complutense University of Madrid, Madrid, Spain.

    Google Scholar 

  • Seguí-Simarro J.M., Testillano P.S., Jourannic S., Henry Y., Risueno M.C. 2005. MAP kinases are developmentally regulated during stress-induced microspore embryogenesis in Brassica napus L. Histochem. Cell Biol., 123: 541–551.

    Article  PubMed  CAS  Google Scholar 

  • Seguí-Simarro J.M., Testillano P.S., Risueno M.C. 2003. Hsp70 and Hsp90 change their expression and subcellular localization after microspore embryogenesis induction in Brassica napus L. J. Struct. Biol., 142: 379–391.

    Article  PubMed  CAS  Google Scholar 

  • Straatman K.R., Schel J.H.N. 1997. Nuclear changes during pollen development and microspore embryogenesis in Brassica napus. Bull. Pol. Acad. Sci. Biol., 45: 195–207.

    Google Scholar 

  • Telmer C.A., Simmonds D.H., Newcombe W. 1992. Determination of developmental stage to obtain high frequencies of embryogenic microspores in Brassica napus. Physiol. Plant., 84: 417–424.

    Article  Google Scholar 

  • Testillano P.S., Georgiev S., Mogensen L., Coronado M.J., Dumas C., Risueno M.C., Matthys-Rochon E. 2004. Spontaneous chromosome doubling results from nuclear fusion during in vitro maize induced microspore embryogenesis. Chromosoma, 112: 342–349.

    Article  PubMed  CAS  Google Scholar 

  • Testillano P.S., González-Melendi P., Ahmadian P., Risueno M.C. 1995. The methylation-acetylation (MA) method, an ultrastructural cytochemistry for nucleic acids compatible with immunogold studies. J. Struct. Biol., 114: 123–139.

    Article  PubMed  CAS  Google Scholar 

  • Testillano P.S., González-Melendi P., Coronado M.J., Segui J.M., Moreno M.A., Risueno M.C. 2005. Differentiating plant cells switched to proliferation remodel the functional organization of nuclear domains. Cytogenet. Genome Res., 109: 166–174.

    Article  PubMed  CAS  Google Scholar 

  • Testillano P.S., Ramírez C., Domenech J., Coronado M.J., Vergne P., Matthys-Rochon E., Risueno M.C. 2002. Young microspore-derived maize embryos show two domains with defined features also present in zygotic embryogenesis. Int. J. Dev. Biol., 46: 1035–1047.

    PubMed  CAS  Google Scholar 

  • Yeung E., Rahman M.H., Thorpe T.A. 1996. Comparative development of zygotic and microspore-derived embryos in Brassica napus L. cv. Topas. I. Histodifferentiation. Int. J. Plant Sci., 157: 27–39.

    Article  Google Scholar 

  • Zaki M.A., Dickinson H.G. 1990. Structural changes during the first divisions of embryos resulting from anther and free microspore culture in Brassica napus. Protoplasma, 156: 149–162.

    Article  Google Scholar 

  • Zaki M.A., Dickinson H.G. 1991. Microspore-derived embryos in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sex. Plant Reprod., 4: 48–55.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar S. Testillano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satpute, G.K., Long, H., Seguí-Simarro, J.M. et al. Cell architecture during gametophytic and embryogenic microspore development in Brassica napus L.. Acta Physiol Plant 27, 665–674 (2005). https://doi.org/10.1007/s11738-005-0070-y

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-005-0070-y

Key words

Navigation