Skip to main content
Log in

The effect of the temperature of drying on viability and some factors affecting storability of Fagus sylvatica seeds

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Beech (Fagus sylvatica L.) seeds, which are tolerant to desiccation, freshly harvested after shedding, were dried at 15 and 30 °C and at the similar rate, to 9% of water content. A slight decrease of germinability was observed in seeds dried at 30 °C. Moreover, there was a notably higher solute leakage and a higher level of lipid hydroperoxides. Seeds dried at 30 °C contained less PC and PE and a lower level of unsaturated fatty acids (18:2 and 18:3), sterols and α-tocopherol. These results as well as changes in ascorbate and glutathione contents provide conclusive evidence for the presence of oxidative stress in beech seeds desiccated at 30 °C, which damaged membranes due to increased lipid peroxidation and changed membrane structure leading to their enhanced sensibility to free radical attack during storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen C.F., Good P., Davis H.F., Chisum P., Fowler S.D. 1966. Methodology for the separation of plant lipids and application to spinach leaf and chloroplast lamellae. J. Am. Oil Chem. Soc. 43: 223–230.

    Article  CAS  Google Scholar 

  • Ames D.N. 1966. Assay of inorganic phosphate, total phosphate and phosphatases. In: Methods in Enzymology, ed. by S.P. Colowick, N.O. Kaplan, Acad. Press, New York: 115–118.

    Google Scholar 

  • Blackman S.A., Obendorf R.L., Leopold A.C. 1992. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiol. 100: 225–230.

    PubMed  CAS  Google Scholar 

  • Côme D, Corbineau F. 1996. Metabolic damage related to desiccation sensitivity. In: Intermediate/Recalcitrant Tropical Forest Tree Seeds, ed. by A.S. Ouédraogo, K. Poulsen, F. Stubsgaard, Rome, IPGRI: 107–120.

    Google Scholar 

  • De Vos C.H., Kraak L., Bino R.J. 1994. Ageing of tomato seeds involves glutathione oxidation. Physiol. Plant. 92: 131–139.

    Article  Google Scholar 

  • Farrant J.M., Berjak P., Pammenter N.W. 1985. The effect of drying rate on viability retention of propagules of Avicenia marina. South African J. Bot. 51: 113–141.

    Google Scholar 

  • Gay C., Collins J., Gebicki J.M. 1999. Hydroperoxide assay with the ferric-xylenol orange complex. Anal. Bioch. 273: 149–155.

    Article  CAS  Google Scholar 

  • Gosling P.G. 1991. Beechnut storage: A review and practical interpretation of the scientific literature. Forestry, 64: 51–59.

    Article  Google Scholar 

  • Greggains W. Finch-Savage W.E., Quick W.P., Atherton N.M. 2000. Putative desiccation tolerance mechanisms in orthodox and recalcitrant seeds of the genus Acer. Seed Sci. Res. 10: 317–327.

    CAS  Google Scholar 

  • Griffiths G., Leverentz M., Silkowski H., Gill N., Sanchez-Serrano J.J. 2000. Lipid hydroperoxide levels in plant tissues. J. Exp. Bot. 51: 1363–1370.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B., Gutteridge J.M.C. 1989. Free radicals in biology and medicine. Oxford: Clarendon Press. 188–275.

    Google Scholar 

  • Hendry G.A.F., Finch-Savage W.E., Thorpe P.C., Atherton N.M., Buckland S.M., Nilsson K.A., Seel W.E. 1992. Free radical processes and loss of seed viability during desiccation in the recalcitrant species Quercus robur L. New Phytol. 122: 273–279.

    Article  CAS  Google Scholar 

  • Hodges D.M., Delong J.M., Forney C.F., Prange R.K. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin an other interfering compounds. Planta 207: 604–611.

    Article  CAS  Google Scholar 

  • Juaneda P.G., Rocquelin G. 1985. Rapid and convenient separation of phospholipids and non-phosphorus lipids from rat heart using silica cartridges. Lipids 20: 40–41.

    Article  PubMed  CAS  Google Scholar 

  • Kampfenkel K., Van Montagu M., Inzé D. 1995. Exteraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Bioch. 225: 165–167.

    Article  CAS  Google Scholar 

  • Kendall E.J., McKersie B.D. 1989. Free radical and freezing injury to cell membranes of winter wheat. Physiol. Plant. 76: 86–94.

    Article  CAS  Google Scholar 

  • León-Lobos P., Ellis R.H. 2002. Seed storage behaviour of Fagus sylvatica and Fagus crenata. Seed Sci. Res. 12:31–37.

    Article  Google Scholar 

  • Leprince O., Deltour R., Thorpe P.C., Atherton N.M., Hendry G.A.F. 1990. The role of free radical processing systems in loss of desiccation tolerance in germinating maize (Zea mays L.). New Phytol. 116: 573–580.

    Article  CAS  Google Scholar 

  • Leprince O., Hendry G.A.F., McKersie B.D. 1993. The mechanism of desiccation tolerance in developing seeds. Seed Sci. Res. 3: 231–246.

    Google Scholar 

  • Leprince O., Atherton N.M., Deltour R., Hendry G.A.F. 1994. The involvement of respiration in free radical processes during loss of desiccation tolerance in germinating Zea mays L.. An electron paramagnetic resonance study. Plant Physiol. 104: 1333–1339.

    PubMed  CAS  Google Scholar 

  • Leprince O., Vertucci C.W., Hendry G.A.F., Atherton N.M. 1995. The expression of desiccation induced damage in orthodox seeds is function of oxygen and temperature. Physiol. Plant. 94: 233–240.

    Article  CAS  Google Scholar 

  • Li C.R., Loch C.S., Sun W.Q. 1999. An improved dehydration protocol for cryo-preservation of Brassica napus somatic embryos. CryoLetters 20: 263–268.

    Google Scholar 

  • Metcalfe L.D., Schmitz A.A., Pelka J.R. 1966. Rapid preparation of fatty acids esters for gas chromatographic analysis. Anal. Chem. 38: 514–515.

    Article  CAS  Google Scholar 

  • Navari-Izzo F., Izzo R., Bottazzi F., Ranieri A. 1988. Effect of water stress and salinity on sterols in Zea mays shoots. Phytochemistry 27: 3109–3115.

    Article  CAS  Google Scholar 

  • Nichols B.W., Harris R.V., James A.T. 1965. The lipid metabolism of blue-green algae. Biochim. Biophys. Res. Commun. 20: 256–262.

    Article  CAS  Google Scholar 

  • Pammenter N.W., Greggains V., Kioko J.I., Wesley-Smith J., Berjak P., Finch-Savage W.E. 1998. Effect of differential drying rate on viability retention of recalcitrant seeds of Ekebergia capensis. Seed Sci. Res. 8: 463–471.

    Google Scholar 

  • Pukacka S. 1983. Phospholipid changes and loss of viability in Norway maple (Acer platanoides L.) seeds. Z. Pflanzenphysiol. 112: 199–205.

    CAS  Google Scholar 

  • Pukacka S. 1989. The effect of desiccation on viability and phospholipid composition of Acer saccharinum L. seeds. Trees 3: 144–148.

    Article  Google Scholar 

  • Pukacka S. 1993. Phospholipase D activity during long-term storage of Acer platanoides seeds in the imbibed state and desiccation of Acer saccharinum seeds. Acta Physiol. Plant. 15: 147–153.

    CAS  Google Scholar 

  • Pukacka S. 1998. Changes in membrane fatty acid composition during desiccation of seeds of silver maple. Seed Sci. Technol. 26: 535–540.

    Google Scholar 

  • Pukacka S., Czubak A. 1998. The effect of desiccation on viability and membrane lipid composition of Acer pseudoplatanus seeds. Acta Soc. Bot. Pol. 67: 249–252.

    CAS  Google Scholar 

  • Roberts E.H. 1973. Predicting the storage life of seeds Seed Sci. Technol. 1: 499–514

    Google Scholar 

  • Senaratna T., McKersie, Stinson R.H. 1985. Antioxidant levels in germinating soybean seed axes in relation to free radical and dehydration tolerance. Plant Physiol. 78: 168–171.

    Article  PubMed  CAS  Google Scholar 

  • Senaratna T., McKersie B.D. 1986. Loss of desiccation tolerance during seed germination: a free radical mechanism of injury. In: Membrane Metabolism and Dry Organism, ed. by A.C. Leopold, Cornell Univ. Press, Itaca: 85–110.

    Google Scholar 

  • Smith I. 1985. Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitors. Plant Physiol. 79: 1044–1047.

    PubMed  CAS  Google Scholar 

  • Suszka B., Muller C., Bonnet-Masimbert M. 1996. Seeds of forest broadleaves from harvest to sowing ed. by INRA, Paris: 17–20.

  • Walters C. 1998. Understanding the mechanisms and kinetics of seed ageing. Seed Sci. Res. 8: 223–244.

    CAS  Google Scholar 

  • Wang X-J, Loh C-S, Yeoh H-H., Sun W.Q. 2002. Drying rate and dehydrin synthesis associated with abscisic acid-induced dehydration tolerance in Spathoglottis plicata orchidaceae protocorms. J. Exp. Bot. 53: 551–558.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisława Pukacka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pukacka, S., Wójkiewicz, E. The effect of the temperature of drying on viability and some factors affecting storability of Fagus sylvatica seeds. Acta Physiol Plant 25, 163–169 (2003). https://doi.org/10.1007/s11738-003-0049-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-003-0049-5

Key words

Navigation