Skip to main content
Log in

Relationships between jasmonates and auxin in regulation of some physiological processes in higher plants

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Growth and development of plants are regulated by interactions among different plant growth substances. During stress conditions, both abiotic and biotic, interaction of the some hormones activates defense responses. The present review describes the interaction between jasmonates and auxin in regulation of some physiological processes in plant growth and development. Some jasmonate-induced processes reduced by auxins and some auxin stimulated physiological processes inhibited by jasmonates are the focus of this review. Therefore, the following physiological processes are described: stem cell growth, abscission, secondary abscission zone formation, tendril coiling, opening of the pulvinules in Mimosa pudica, wounding and induced gene expression, nicotine biosynthesis and auxin biosynthesis in Brassicaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADC:

arginine decarboxylase

BAP:

benzylaminopurine

CAT:

chloramphenicol acetyl transferase

CDI:

cathepsin D inhibitor

CHS:

chalcone synthase

2,4-D:

2,4-dichlorophenoxyacetic acid

HPL:

hydroperoxide lyase

IAA:

indole-3-acetic acid

IAN:

indole-3-acetonitrile

IAOX:

indole-3-acetaldoxime

IBA:

indole butyric acid

IMG:

indole-3-methylglucosinolate

IPA:

indole propionic acid

JA:

jasmonic acid

JA-Me:

methyl jasmonate

LOX:

lipoxygenase

NAA:

naphthalene acetic acid

ODC:

ornithine decarboxylase

PAA:

phenylacetic acid

PI:

proteinase inhibitor

PMT:

putrescine N-methyltransferase

SAMDC:

S-adenosylmethionine decarboxylase

SAMS:

S-adenosylmethionine synthase

2,4,5-T:

2,4,5-trichlorophenoxyacetic acid

VSP:

vegetative storage protein

References

  • Aldridge D. C., Galt S., Giles D., Turner W. B., 1971. Metabolites of Lasiodiplodia theobromae. J. Chem. Soc. Chem. Commun., 1623–1627.

  • Anderson J.M., 1988. Jasmonic acid-dependent increases in the level of specific polypeptides in soybean suspension cultures and seedlings. J. Plant Growth Regul., 7: 203–211.

    Article  CAS  Google Scholar 

  • Anderson J.M., 1991. Jasmonic acid-dependent increase in vegetative storage protein in soybean tissue cultures. J. Plant Growth Regul., 10: 5–10.

    Article  CAS  Google Scholar 

  • Baldwin I.T., 1989. The mechanism of damaged-induced alkaloids in wild tobacco. J. Chem. Ecol., 15: 1661–1680.

    Article  CAS  Google Scholar 

  • Baldwin I.T., 1996. Methyl jasmonate-induced nicotine production in Nicotiana attenuata: inducing defenses in the field without wounding. Entomol. Exper. Applicata, 80: 213–220.

    Article  CAS  Google Scholar 

  • Baldwin I.T., Oesch R.C., Merhige P.M., Hayes K., 1993. Damage-induced root nitrogen metabolism in Nicotiana sylvestris: Testing C/N predictions for alkaloid production. J. Chem. Ecol., 19: 3029–3043.

    Article  CAS  Google Scholar 

  • Baldwin I.T., Schmelz E.A., Ohnmeiss T.E., 1994. Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes. J. Chem. Ecol., 20: 2139–2157.

    Article  CAS  Google Scholar 

  • Baldwin I.T., Schmelz E.A., Zhang Z.-P., 1996. Effects of octadecanoic metabolites and inhibitors on induced nicotine accumulation in Nicotiana sylvestris. J. Chem. Ecol., 22: 61–74.

    Article  CAS  Google Scholar 

  • Baldwin I.T., Zhang Z.-P., Diab N., Ohnmeiss T.E., MnCloud E.S., Lynds G.Y., Schmelz E.A., 1997. Quantification, correlations, and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta, 201: 397–404.

    Article  CAS  Google Scholar 

  • Bell E., Mullet J. E., 1991. Lipoxygenase gene expression is modulated in plants by water deficit, wounding, and methyl jasmonate. Mol. Gen. Genet., 230: 456–462.

    Article  PubMed  CAS  Google Scholar 

  • Blechert S., Bockelmann C., Fusslein M., Schrader T.V., Stelmach B., Niesel U., Weiler E.W., 1999. Structure-activity analyses reveal the existence of two separate groups of active octadecanoids in elicitation of the tendril-coiling response of Bryonia dioica Jacq. Planta, 207: 470–479.

    Article  CAS  Google Scholar 

  • Bodnaryk R.P., 1994. Potent effect of jasmonates of indole glucosinolates in oilseed rape and mustard. Phytochemistry, 35: 301–305.

    Article  CAS  Google Scholar 

  • Creelman R.A., Tierney M.L., Mullet J.E., 1992. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc. Natl. Acad. Sci. USA, 89: 4938–4941.

    Article  PubMed  CAS  Google Scholar 

  • Creelman R.A., Mullet J.E., 1997. Oligosaccharides, brassinolides, and jasmonates: Nontraditional regulators of plant growth, development, and gene expression. Plant Cell, 9: 1211–1223.

    Article  PubMed  CAS  Google Scholar 

  • Demole E., Lederer E., Mercier D., 1962. Isolement et determination de la structure du l’essence de jasmin. Helv. Chem. Acta, 45: 675–685.

    Article  CAS  Google Scholar 

  • DeWald D.B., Sadka A., Mullet J.E., 1994. Sucrose modulation of soybean VSP gene expression in inhibited by auxin. Plant Physiol., 104: 439–444.

    PubMed  CAS  Google Scholar 

  • Doughtly K.J., Kiddle G.A., Pye B.J., Wallsgrove R.M., Pickett J.A., 1995. Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry, 38: 347–350.

    Article  Google Scholar 

  • Facchini P.J., 2001. Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52: 29–66.

    Article  PubMed  CAS  Google Scholar 

  • Falkenstein E., Groth B., Mithofer A., Weiler E.W., 1991. Methyl jasmonate and linolenic acid are potent inducers of tendril coiling. Planta, 185:316–322.

    Article  CAS  Google Scholar 

  • Farmer E.E., Ryan C.A., 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA, 87: 7713–7716.

    Article  PubMed  CAS  Google Scholar 

  • Franceschi V.R., Grimes H.D., 1991. Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc. Natl. Acad. Sci. USA, 88: 6745–6749.

    Article  PubMed  CAS  Google Scholar 

  • Feth F., Wagner R., Wagner K.G., 1986. Regulation in tobacco callus of enzyme activities of the nicotine pathway. I. The route ornithine to methylpyrroline. Planta, 168: 402–407.

    Article  CAS  Google Scholar 

  • Gantet P., Imbault N., Thiersault M., Doireau P., 1998. Necessity of a functional octadecanic pathway for indole alkaloid synthesis by Catharanthus roseus cell suspension cultured in an auxin-starved medium. Plant Cell Physiol., 39: 220–225.

    CAS  Google Scholar 

  • Graham J.S., Hall G., Pearce G., Ryan C.A., 1989. Regulation of synthesis of proteinase inhibitor I and II mRNAs in leaves of wounded tomato plants. Planta, 169: 399–405.

    Article  Google Scholar 

  • Grsic S., Kirchheim B., Pieper K., Fritsch M., Hilgenberg W., Ludwig-Muller J., 1999. Induction of auxin biosynthetic enzymes by jasmonic acid and in clubroot diseased Chinese cabbage plants. Physiol. Plant., 105: 521–531.

    Article  CAS  Google Scholar 

  • Hamberg M., Gardner H.G., 1992. Oxylipin pathway to jasmonates: biochemistry and biological significance. Biochem. Biophys. Acta, 1165: 1–18.

    PubMed  CAS  Google Scholar 

  • Hibi N., Higashiguchi S., Hashimoto T., Yamada Y., 1994. Gene expression in tobacco low-nicotine mutants. Plant Cell, 6: 723–735.

    Article  PubMed  CAS  Google Scholar 

  • Horton R.F. 1976. The regulation of stem abscission in succulents. Ninth Intl. Conf. Plant Growth Subst. Collected Abstracts, Lausanne P. E., Pilet ed., pp.152–153.

  • Imanishi S., Hashizume K., Nakakita M., Kojima H., Matsubayashi Y., Hashimoto T., Sakagami Y., Yamada Y., Nakamura K., 1998. Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol. Biol., 38: 1101–1111.

    Article  PubMed  CAS  Google Scholar 

  • Irving H.R., Dyson G., McConchie R., Parish R.W., Gehring C.A., 1999. Effects of exogenously applied jasmonates on growth and intracellular pH in maize coleoptile segments. J. Plant Growth Regul., 18: 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa A., Yoshihara T., Nakamura K., 1994a. Structure-activity relationships of jasmonates in the induction of expression of two proteinase inhibitor genes of potato. Biosci. Biotech. Biochem., 58: 544–547.

    Article  CAS  Google Scholar 

  • Ishikawa A., Yoshihara T., Nakamura K., 1994b. Jasmonate-inducible expression of a potato cathepsin D inhibitor-GUS gene fusion in tobacco cells. Plant Mol. Biol., 26: 403–414.

    Article  CAS  Google Scholar 

  • Kernan A., Thornburg R.W.W., 1989. Auxin levels regulate the expression of the a wound-inducible proteinase inhibitor II-chloramphenicol acetyl transferase gene fusion in vitro and in vivo. Plant Physiol., 91: 73–78.

    PubMed  CAS  Google Scholar 

  • Koda Y., 1992. The role of jasmonic acid and related compounds in the regulation of plant development. Inter. Rev. Cytol., 135: 155–198.

    Article  CAS  Google Scholar 

  • Kutchan T.M., 1995. Alkaloid biosynthesis; the basis for metabolic engineering of medicinal plants. Plant Cell, 7: 1059–1070.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Muller J., Bendel U., Thermann P., Ruppel M., Epstein E., Hilbergen W., 1993. Concentrations of indole-3-acetic acid in plants of tolerant and susceptible varieties of Chinese cabbage infected by Plasmodiophora brassicae Woron. New Phytol., 125: 763–769.

    Article  Google Scholar 

  • Ludwig-Muller J., Scubert B., Pieper K., Ihmig S., Hilgenberg W., 1997. Glucosinolate content in susceptible and tolerant Chinese cabbage varieties during the development of the clubroot disease. Phytochemistry, 44: 407–414.

    Article  Google Scholar 

  • Mason H.S., DeWald D.B., Creelman R., Mullet J.E., 1992. Coregulation of soybean vegetative storage protein gene expression by methyl jasmonate and soluble sugars. Plant Physiol., 98: 859–867.

    PubMed  CAS  Google Scholar 

  • Mason H.S., Mullet J.E., 1990. Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding and jasmonic acid. Plant Cell, 2: 569–579.

    Article  PubMed  CAS  Google Scholar 

  • McManus M. T., Thompson D. S., Merriman C., Lyne L., Osborne D.J., 1998. Transdifferentiation of mature cortical cells to functional abscission cells in bean. Plant Physiol., 116: 891–899.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto K., Oka M., Ueda J., 1997. Update on the possible mode of action of the jasmonates: Focus on the metabolism of cell wall polysaccharides in relation to growth and development. Physiol. Plant., 100: 631–638.

    Article  CAS  Google Scholar 

  • Mizusaki S., Tanabe Y., Noguchi M., Tamaki E., 1973. Changes in the activities of ornithine decarboxylase, putrescine N-methyltransferase and N-methylputrescine oxidase in tobacco roots in relation to nicotine biosynthesis. Plant Cell Physiol., 14: 103–110.

    CAS  Google Scholar 

  • Montague M.J., 1997. Exogenous jasmonic acid abscisic acids act differentially in elongating tissues from oat stem segments. J. Plant Growth Regul., 16: 11–19.

    Article  CAS  Google Scholar 

  • Murofushi N., Yamane H., Sakagami Y., Imaseki H., Kamiya Y., Iwamura H., Hirai N., Tsuji H., Yokota T., Ueda J., 1999. Plant Hormones. In: Comprehensive Natural Products Chemistry (Editor Miscellaneous Natural Products including Marine-in Chief: Sir Derek Barton, Koji Nakanishi, Executive Editor: Otto Meth-Cohn), Vol. 8, Natural Products, Pheromones, Plant Hormones, and Aspects of Ecology (Volume Editor: Kenji Mori), Elsevier, Amsterdam, pp. 19–136.

    Google Scholar 

  • Pena-Cortes H., Fisahn J., Willmitzer L., 1995. Signal involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc. Natl. Acad. Sci. USA, 92: 4106–4113.

    Article  PubMed  CAS  Google Scholar 

  • Pena-Cortes H., Sanchez-Serrano J. J., Mertens R., Willmitzer L., Prat S., 1989. Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc. Natl. Acad. Sci. USA, 86: 9851–9855.

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S., Mollenhauer B., Reinbothe S.C., 1994. JIPs and RIPs: The regulation of plant gene expression by jasmonates in responses to environmental cues and pathogens. Plant Cell, 6: 1197–1209.

    Article  PubMed  CAS  Google Scholar 

  • Rojo E., Titarenko E., Leon J., Berger S., Vancanneyt G., Sanchez-Serrano J.J., 1998. Reversible protein phosphorylation regulates jasmonic acid dependent and independent wound signal transduction pathways in Arabidopsis thaliana. Plant J., 12: 153–165.

    Article  Google Scholar 

  • Saniewski M., 1995. Methyl jasmonate in relation to ethylene production and other physiological processes in selected horticultural crops. Acta Hortic., 394: 85–98.

    CAS  Google Scholar 

  • Saniewski M., 1997. The role of jasmonates in ethylene biosynthesis. In: A.K. Kanellis, C. Chang, H. Kende, D. Grierson (eds.), Biology and Biotechnology of the Plant Hormone Ethylene, Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 39–45.

    Google Scholar 

  • Saniewski M., Ueda J., Miyamoto K., 1999. Interaction of ethylene with jasmonates in the regulation of some physiological processes in plants. In: A.K. Kanellis, C. Chang, H. Klee, A.B. Bleecker, J.C. Pech, D. Grierson (eds.), Biology and Biotechnology of the Plant Hormone Ethylene II, Kluwer Academic Publishers, Dordrecht, Boston, pp. 173–180.

    Google Scholar 

  • Saniewski M., Ueda J., Miyamoto K., 2000. Methyl jasmonate induces the formation of secondary abscission zone in stem of Bryophyllum calycinum Salisb. Acta Physiol. Plant., 22: 17–23.

    CAS  Google Scholar 

  • Saniewski M., Utsumoniya M., Miyamoto K., Ueda J., 2001. Transdifferentiation to the secondary abscission induced by methyl jasmonate in Bryophyllum calycinum. Plant Cell Physiol., 42 (supplement): 86.

    Google Scholar 

  • Sembdner G., Parthier B., 1993. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44: 569–589.

    Article  CAS  Google Scholar 

  • Seo S., Sano H., Ohashi Y., 1997. Jasomonic acid in wound signal transduction pathways. Physiol. Plant., 100: 740–745.

    Article  Google Scholar 

  • Shoji T., Yamada Y., Hashimoto T., 2000. Jasmonate induction of proteinase N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol., 41: 831–839.

    Article  PubMed  CAS  Google Scholar 

  • Smulders M.J., Horton R.F., 1991. Ethylene promotes elongation growth and auxin promotes radial growth in Ranunculus scleratus petioles. Plant Physiol., 96: 806–811.

    PubMed  CAS  Google Scholar 

  • Stelmach B.A., Muller A., Weiler E.A., 1999. 12-Oxo-phytodienoic acid and indole-3-acetic acid in jasmonic acid-treated tendril of Bryonia dioica. Phytochemistry, 51: 187–192.

    Article  CAS  Google Scholar 

  • Theologis A., Huynh T. V., Davis R. W., 1985. Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J. Mol. Biol., 183: 53–68.

    Article  PubMed  CAS  Google Scholar 

  • Thornburg R.W., Park S., and Li X., 1993. Hormonal regulation of wound inducible proteinase inhibitor II genes. In: Control of plant gene expression, D.P. Verma, (ed.) Boca Raton, FL: CRC Press, pp. 91–101.

    Google Scholar 

  • Thornburg R.W., and Li X., 1991. Wounding Nicotiana tabacum leaves causes a decline in endogenous indole-3-acetic acid. Plant Physiol., 96: 802–805.

    PubMed  CAS  Google Scholar 

  • Tsurumi S., Asahi Y., 1985. Identification of jasmonic acid in Mimosa pudica and its inhibitory effect on auxin- and light-induced opening of the pulvinules. Physiol. Plant., 64: 207–211.

    Article  CAS  Google Scholar 

  • Tsurumi S., Asahi Y., Suda S., 1985. IAA-induced opening of excised Mimosa pulvinules. Bot. Mag., Tokyo, 97: 89–97.

    Article  Google Scholar 

  • Ueda J., Kato J., 1980. Isolation and identification of a senescence-promoting substances from wormwood (Artemisia absinthium L.). Plant Physiol., 66: 246–249.

    Article  PubMed  CAS  Google Scholar 

  • Ueda J., Miyamoto K., Aoki M., 1994. Jasmonic acid inhibits the IAA-induced elongation of oat coleoptile segments: A possible mechanism involving the metabolism of cell wall polysaccharides. Plant Cell Physiol., 35: 1065–1070.

    CAS  Google Scholar 

  • Ueda J., Miyamoto K., Hashimoto M., 1996. Jasmonates promote abscission in bean petiole explants: Its relationship to the metabolism of cell wall polysaccharides and cellulase activity. J. Plant Growth Regul., 15: 189–195.

    Article  CAS  Google Scholar 

  • Ueda J., Miyamoto K., Kamisaka S., 1995. Inhibition of the synthesis of cell wall polysaccharides in oat coleoptile segments by jasmonic acid: Relevance to its growth inhibition. J. Plant Growth Regul., 14: 69–76.

    Article  CAS  Google Scholar 

  • Walling L.L., 2000. The myriad plant responses to herbivores. J. Plant Growth Regul., 19: 195–216.

    PubMed  CAS  Google Scholar 

  • Weiler E.W., Albrecht T., Groth B., Xia Z.-Q., Luxem M., LiB H., Andert L., Spengler P., 1993. Evidence for the involvement of jasmonates and their octadecanoid precursors in the tendril coiling response of Bryonia dioica, Phytochemistry, 32: 591–600.

    Article  CAS  Google Scholar 

  • Wightman F., Lighty D. L., 1982. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol. Plant., 55: 17–24.

    Article  CAS  Google Scholar 

  • Yamane H., Takagi H., Abe H., Yokota T., Takahashi N., 1981. Identification of jasmonic acid in three species of higher plants and its biological activities. Plant Cell Physiol., 22: 689–697.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saniewski, M., Ueda, J. & Miyamoto, K. Relationships between jasmonates and auxin in regulation of some physiological processes in higher plants. Acta Physiol Plant 24, 211–220 (2002). https://doi.org/10.1007/s11738-002-0013-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-002-0013-9

Key words

Navigation