Skip to main content

Advertisement

Log in

Selection for virus resistance in tomato exposed to tissue culture procedures

  • Biotic Stresses
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Protocols elaborated with the objective of achieving valuable material for selection procedure of variants with virusresistance traits in tomato genotypes are presented. Preliminary results are demonstrated in the domain of testing for variability in somaclones obtained through indirect adventitous organogenesis initiated on leaf explants of cultivated tomato (Lycopersicon esculentum Mill.). Somaclones were grown in greenhouse conditions and variation of their symptoms upon infection with tomato mosaic (ToMV) or cucumber mosaic (CMV) respectively was observed. Tests for resistance to the local isolates of the above cited viruses were performed using enzyme linked immunosorbent assay and back inoculation onto diagnostic plants. Screening data are presented. Desirable variants were selected from cultivars ‘Moneymaker’, ‘Potentat’ and ‘Rutgers’. Some of the ‘Moneymaker’ somaclones exhibited increased tolerance to cucumber mosaic virus, a few seemed to be even fully resistant though most were susceptible as donor plants. The most favourable somaclonal lines are actually further tested and monitored for changes in horticultural characteristics. The described procedure of searching for resistance trait in specific pathogen-free (SPF) plants regenerated from infected tissue looks promising and thus can serve as aid in attaining appropriate objectives of breeding programme.

Additionaly experiments were initiated to obtain somaclones from cultivars ‘Beta’, ‘Krakus’ and Stevens Rodade hybrid via regeneration of isolated protoplasts. To this end the callus stage was obtained from all donors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

6-benzylaminopurine

MES:

2-[N-Morpholino]ethane-sulfonic acid

CMV:

cucumber mosaic virus

ToMV:

tomato mosaic virus

DAS ELISA:

double antibody sandwich procedure of enzyme-linked immunosorbent assay

SPF plants:

specific pathogen-free plants

References

  • Bajaj Y.P.S. 1994. Somatic hybridization in crop improvement. In: Biotechnology in Agriculture and Forestry. Springer-Verlag, Berlin: 501–533

    Google Scholar 

  • Barden K.A. Schiller Smith S. and H.H. Murakishi. 1986. Regeneration and screening of tomato somaclones for resistance to tobacco mosaic virus. Plant Science 45: 209–213

    Article  Google Scholar 

  • Beachy R.N. 1997. Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr. Opin. in Biotechnol. 8: 215–220

    Article  CAS  Google Scholar 

  • Bednarek J., Czuber B., Maj Z., Kobyłko . 1983. Identification of Tobacco Mosaic Virus races isolated from two species of the winter cherry (Physalis) and the susceptibility to infection by the former of some cultivars of the field tomato (Lycopersicon esculentum Mill.). Acta Agraria et Silv. Series Agraria Vol. XXII: 3–18

    Google Scholar 

  • Bobisud C.A., Martin S.P., Sekioka T.T. 1996. Field testing bacterial wilt-resistant tomato somaclones. Jour. Amer. Soc. Hort. Scien. 121: 3

    Google Scholar 

  • Bogani P., Simoni A., Bettini P., Mugnai M., Pellegrini M.G. and M. Buiatti. 1995. Genome flux in tomato auto- and auxo-trophic cell clones cultured in different auxin/cytokinin equilibria. I. DNA multiplicity and metylation levels. Genome 38: 902–912

    CAS  PubMed  Google Scholar 

  • Bogani P., Simoni A., Lio’ P., Scialpi A. and Buiatti M. 1996. Genome flux in tomato cell clones cultured in vitro in different physiological equilibria. II. A RAPD analysis of variability. Genome 39: 846–853

    Article  CAS  PubMed  Google Scholar 

  • Bouman H., de Klerk G.J. 1997. Somaclonal variation. In: Biotechnology of ornamental plants. CAB International R.L. Geneve, J.E. Preece and S.A. Merkle eds.: 165–183

  • Buiatti M., Simeti C., Vannini S., Marcheschi G., Scala A., Bettini P., Bogani P. and Pellegrini M.G. 1987. Isolation of tomato cell lines with altered response to Fusarium cell wall components. T.A.G. 75: 37–40

    Google Scholar 

  • Coyne D.P. 1995. Classical and Molecular Approaches to Breeding Horticultural Plants for Disease Resistance: Introduction to the Colloquium. Hort. Science 30/3: 448–477

    Google Scholar 

  • De Kłerk G.J. 1990. How to measure somaclonal variation. Acta Bot. Neerl. 39: 129–144

    Google Scholar 

  • Dempsey M., Silva H., Klessig D. 1998. Engineering disease and pest resistance in plants. Trends in Microbiol.: 6/2: 54–61

    Article  CAS  Google Scholar 

  • De Vries R.M., Stephens C.T., De Vries R.M. 1997. Response of first generation tomato somaclone progeny to Clavibacter michiganensis subsp. michiganensis. Plant Scien. Limerick. 126: 69–77

    Article  Google Scholar 

  • Fitchen J.H., Beachy R.N. 1993. Genetically engineered protection against viruses in transgenic plants. Annu. Rev. Microbiol.: 47: 739–763

    Article  PubMed  CAS  Google Scholar 

  • Gamborg O.L., Miller R.A., Ojima K. 1968. Nutrient requirements of suspension cultures og soybean root cells. Experim. Cell Research 50:151–158

    Article  CAS  Google Scholar 

  • Grunewaldt J., Dunemann F. 1991. Variation and Selection in vitro. Gartenbauwissenschaft 56/1: 1–5

    Google Scholar 

  • Guardiola M.L., Bettini P., Bogani P., Pellegrini M.G., Storti E., Bittini P. and Buiatti M. 1994. Modification of competence for in vitro response to Fusarium oxysporum in tomato cells. I. Selection from a susceptible cultivar for high and low polysaccharide content. T.A.G. 87: 998–995

    Google Scholar 

  • Gartner U. 1992. Protoplastenkultur bei Tomate (Lycopersicon) unter besonderer Berucksichtidung metodischer Aspekte (Ubersichtsarbeit). Biologisches-Zentralbl. 111/1:1–20

    Google Scholar 

  • Hille J., Zabel P., Koornneef M., Kaloo G. 1991. Genetic transformation of tomato and prospects for gene transfer. In: Genetic improvement of tomato. Monographs on Theoretical and Applied Genetics. Vol. 14, G. Kaloo ed. Springer-Verlag, Berlin Heidelberg New York: 283–291

    Google Scholar 

  • Hossain M., Imanishi S. Egashira H. 1995. An improvement of tomato protoplast culture for rapid plant regeneration. Plant Cell Tiss. & Organ Cult. 42: 141–146

    Article  Google Scholar 

  • Hulanicka M.D., Zagórski-Ostoja W., Pałucha A. 1997. Non-conventional strategies to protect plants against viral infections. In: Zesz. Nauk. A.R. w Krakowie Nr 318 zesz. 50: 119–126

    Google Scholar 

  • Hull R. 1994. Resistance to plant viruses: Obtaining genes by non-conventional approaches. Euphyt. 75: 195–205

    Article  Google Scholar 

  • Ingram D.S. 1973. Growth of Plant Parasites in Tissue Culture. In: Plant Tissue and Cell Culture., H.E. Street ed., Blackwell Scien. Publ. Oxford: 392–432

    Google Scholar 

  • Ingram D.S. 1976. Growth of Biotrophic Parasites in Tissue Culture. In: Physiological Plant Pathology., R. Heitefuss & P.H. Williams eds., Springer-Verlag, Berlin, Heidelberg, New York: 473–759

    Google Scholar 

  • Karp A. 1991. On the current understanding of somaclonal variation. Oxford Surveys Plant Mol. Cell biol. 7: 1–58

    Google Scholar 

  • Kao K.N., Michayluk M.R. 1980. Plant regeneration from mesophyll protoplasts of alfa-alfa. Zeitschrift fur Pflanzenphysiol. 96: 135–141

    Google Scholar 

  • Kobyłko T. 1996. Choroby wirusowe funkii (Hosta Tratt.) Zeszyty Naukowe AR w Krakowie, Rozpr. Nr 207

  • Kuźniak E. 1997. The use of in vitro cultures to study biotic stress induced plant defense reactions. Post. Biol. Kom. 24/4: 403–416

    Google Scholar 

  • Larkin P.J., Scowcroft W.R. 1981. Somaclonal variation — a novel source of variability from cell cultures for plant improvement. T.A.G. 60: 197–214

    Article  Google Scholar 

  • Lech M., Pindel A., Miczyński K. 1997. Plant regeneration from protoplasts obtained from mesophyll leaf tissue of Lycopersicon glandulosum C. H. Mull. Acta Biol. Cracoviensia, Series Botanica 39: 51–54

    Google Scholar 

  • Lefrancois C., Chupeau Y., Bourgin J.P. 1991. Toward cybridization in Lycopersicon species. Physiol. Plant. 82: 1, A38

  • Lefrancois C., Chupeau Y. 1993. Standard conditions for plant regeneration from leaf protoplasts of several Lycopersicon species. Journ. Plant Physiol. 141: 629–632

    Google Scholar 

  • Loebenstein G. 1972. Inhibition, Interference and Acquired Resistance During Infection. In: Principles and Techniques in Plant Virology. C.I. Cado & H.O. Agrawal eds., Van Nostrand Reinhold Company, London, Toronto, Melbourne: 32–61

    Google Scholar 

  • Lukyanenko A.N. 1991. Disease resistance in tomato. In: Genetic improvement of tomato. Monographs on Theoretical and Applied Genetics. Vol. 14, G. Kallo ed., Springer-Verlag, Belin, Heidelberg, New York: 99–119

    Google Scholar 

  • Mori K., Hosokawa D. 1977. Localization of viruses in apical meristems and production of cirus-free plants by means of meristem and tissue culture. Acta Hortic. 78: 389–397

    Google Scholar 

  • Mori K., Hosokawa D., Yamashita T. 1982. Regeneration of virus-free plants from protoplasts isolated from dark-green areas of tobacco mosaic virus-infected tobacco leaves. Proc. Vth Intl. Cong. Plant Tissue & Cell Cult.: 803–804

  • Murashige T. 1978. The impact of Plant Tissue Culture on Agriculture. In: Frontiers of Plant Tissue Culture. T.A. Thorpe ed. Economy Bookbindery Co. Ltd., Calgary: 15–26

    Google Scholar 

  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15:473–479

    Article  CAS  Google Scholar 

  • Niemirowicz-Szczytt K., Bartoszewski G. 1997. Ekspresja transgenów w genomie roślinnym. In: Zesz. Nauk. A.R. w Krakowie Nr 318 zesz. 50: 111–116

    Google Scholar 

  • Pavlica M., Papes D., Franekic J and Nagy B. 1992. Effect of benzyladenine on procaryotic and eukaryotic cels. Mutation Research 281: 277–282

    Article  PubMed  CAS  Google Scholar 

  • Pindel A., Lech M., Miczyński K. 1998. Regeneration of leaf mesophyl protoplasts from Lycopersicon glandulosum, L. peruvianum and L. esculentum Stevens Rodade hybrid. Acta Biol. Cracoviensia, Series Botanica 40: 41–46

    Google Scholar 

  • Sakata Y., Nishio T., Narikawa T., Monma S. 1991. Cold and disease resistance of somatic hybrids between tomato (Lycopersicon esculentum) and L. peruvianum. Journ. Jap. Soc. Hort. Scie. 60: 329–335

    Article  Google Scholar 

  • Sakomoto K., Taguchi T. 1991. Regeneration of intergeneric somatic hybrid plants between Lycopersicon esculentum and Solanum muricatum. T.A.G. 81/4: 509–513

    Google Scholar 

  • Schiller-Smith S., Murakishi H.H. 1993. Restricted virus multiplication and movement of tomato mosaic virus in resistant tomato somaclones. Plant Science 89: 113–122

    Article  Google Scholar 

  • Smulders M.J.M., Rus-Kortekaas W., Gilissen L.J,W. 1995. Natural variation in patterns of polysomaty among individual tomato plants and their regenerated progeny. Plant Sci. 106: 129–139

    Article  CAS  Google Scholar 

  • Storti E., Bogani P., Bettini P., Bonzi Morassi L., Pellegrini M.G., Matteo M., Simeti C. and Buiatti M. 1989. The pleiotropic phenotype of tomato cells selected for altered response to Fusarium oxysporum f. sp. lycopersici cell wall components. T.A.G. 78: 689–695

    Google Scholar 

  • Storti E., Latil C., Salti S., Bettini P., Bogani P., Pellegrini M.G., Simeti C., Molnar A. and Buiatti M. 1992. The in vitro physiological phenotype of tomato resistance to Fusarium oxysporum f. sp. lycopersici. T.A.G. 84: 123–128

    Google Scholar 

  • Sturtevant A.P., Beachy R.N., Hiatt A. 1993. Virus resistance in transgenic plants: coat protein-mediated resistance. In: Transgenic plants: Fundamentals and Applications. M. Dekker ed. New York: 93–112

  • Tan M.M.C., Rietveld E.M., van Marrevijk G.A., Kool A.J. 1987. Regeneration of mesophyll protoplasts of tomato cultivars (L. esculentum). Factors important for efficient protoplast culture and plant regeneration. Plant Cell Rep. 6: 172–175

    Article  Google Scholar 

  • Toyoda H., Horikoshi K., Chatani K., Shimizu K., Ochui S. 1990. Production of virus resistant plants through tissue culture. Abstr. VIIth Int. Cong. Plant Tissue & Cell Culture. Amsterdam

  • Walkey D.G.A. 1978. in vitro methods for virus elimination. In: Frontiers of Plant Tissue Culture. T.A. Thorpe ed. Economy Bookbindery Co. Ltd., Calgary: 245–254

    Google Scholar 

  • Watterson J.C. 1994. Diseases. In: The tomato crop. A scientific basis for improvement. J.G. Atherton, J. Rudich eds., Chapman & Hall, Cambridge: 443–484

    Google Scholar 

  • Wolters A.M., Jacobsen E., O’Connel M., Bonnema G., Ramulu K., de Jong H., Schoenmakers H., Wijbrandi J., Koornneef M. 1994. Somatic hybridization as a tool for tomato breeding. Euph. 79: 265–277

    Article  Google Scholar 

  • Zhuk I.P. 1993. Resistance of tomato somaclones to tobacco mosaic virus. Microbiolog. Zhurnal 55: 41–46

    Google Scholar 

  • Zhuk I.P. 1994. Breeding TMV-resistant tomato somatic clones. Russian Agricult. Sciences No. 5: 5–6

  • Zhuk I.P. 1997. The stability to tobacco mosaic virus in the progeny of virus-resistant tomato somaclones. Russian Agricult. Sciences No. 8: 9–14

  • Zhuk I.P. 1998. Production of tomato clones resistant to TMV using somaclonal variability. Microbiolog. Zhurnal 60: 38–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanus-Fajerska, E., Lech, M., Pindel, A. et al. Selection for virus resistance in tomato exposed to tissue culture procedures. Acta Physiol Plant 22, 317–324 (2000). https://doi.org/10.1007/s11738-000-0045-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-000-0045-y

Key words

Navigation