Skip to main content
Log in

Analysis and control of agreement and disagreement opinion cascades

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

We introduce and analyze a continuous time and state-space model of opinion cascades on networks of large numbers of agents that form opinions about two or more options. By leveraging our recent results on the emergence of agreement and disagreement states, we introduce novel tools to analyze and control agreement and disagreement opinion cascades. New notions of agreement and disagreement centrality, which depend only on network structure, are shown to be key to characterizing the nonlinear behavior of agreement and disagreement opinion formation and cascades. Our results are relevant for the analysis and control of opinion cascades in real-world networks, including biological, social, and artificial networks, and for the design of opinion-forming behaviors in robotic swarms. We illustrate an application of our model to a multi-robot task-allocation problem and discuss extensions and future directions opened by our modeling framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The assumption that the minimum eigenvalue of \(\tilde{A}\) has algebraic multiplicity one is usually true for all sufficiently large complex networks. The case in which this multiplicity is larger can also be analyzed, but for simplicity we do not address it here.

  2. The proposed agreement cascade control algorithm naturally generalizes to the case in which inputs bring mixed information about the various options.

  3. The proposed disagreement cascade control algorithm naturally generalizes to the case in which inputs bring mixed information about the various options as long as \({\varvec{b}}_{i}=\pm {\varvec{b}}_0\), \(i=1,\ldots ,{N_\mathrm{a}}\).

References

  • Albert, R., & Barabasi, A.-L. (2002). Statistical mechanics of complex networks. Reviews of modern physics, 74(1), 47.

    MathSciNet  MATH  Google Scholar 

  • Altafini, C. (2013). Consensus problems on networks with antagonistic interactions. IEEE Transactions on Automatic Control, 58(4), 935–946. https://doi.org/10.1109/TAC.2012.2224251.

    Article  MathSciNet  MATH  Google Scholar 

  • Arthur, W. (1989). Competing technologies, increasing returns, and lock-in by historical events. The Economic Journal, 99(394), 116–131.

    Google Scholar 

  • Banerjee, A., Chandrasekhar, A. G., Duflo, E., & Jackson, M. O. (2013). The diffusion of microfinance. Science, 341(6144).

  • Berg, J. V. D., Guy, S., Lin, M., & Manocha, D. (2011). Reciprocal n-body collision avoidance. Robotics research (pp. 3–19). New York: Springer.

    Google Scholar 

  • Bikhchandani, S., Hirshleifer, D., & Welch, I. (1992). A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of Political Economy, 100(5), 992–1026.

    Google Scholar 

  • Bizyaeva, A., Franci, A., & Leonard, N. E. (2020a). A general model of opinion dynamics with tunable sensitivity. arXiv preprint, arXiv:2009.04332.

  • Bizyaeva, A., Matthews, A., Franci, A., & Leonard, N. E. (2020b). Patterns of nonlinear opinion formation on networks. arXiv preprint, arXiv:2009.13600.

  • Bogacz, R. (2007). Optimal decision-making theories: linking neurobiology with behaviour. Trends in Cognitive Sciences, 11(3), 118–125.

    Google Scholar 

  • Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1), 113–120.

    Google Scholar 

  • Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29(4), 555–564.

    Google Scholar 

  • Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.

    Google Scholar 

  • Centola, D., & Macy, M. (2007). Complex contagions and the weakness of long ties. American Journal of Sociology, 113(3), 702–734.

    Google Scholar 

  • Cisneros-Velarde, P., Chan, K. S., & Bullo, F. (2019). Polarization and fluctuations in signed social networks. arXiv preprint, arXiv:1902.00658.

  • Clark, A., Bushnell, L., & Poovendran, R. (2014). A supermodular optimization framework for leader selection under link noise in linear multi-agent systems. IEEE Transactions on Automatic Control, 59(2), 283–296. https://doi.org/10.1109/TAC.2013.2281473.

    Article  MathSciNet  MATH  Google Scholar 

  • Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433(7025), 513–516.

    Google Scholar 

  • Couzin, I. D., Ioannou, C. C., Demirel, G., Gross, T., Torney, C. J., Hartnett, A. T., et al. (2011). Uninformed individuals promote democratic consensus in animal groups. Science, 334(6062), 1578–1580.

    Google Scholar 

  • Dandekar, P., Goel, A., & Lee, D. T. (2013). Biased assimilation, homophily, and the dynamics of polarization. Proceedings of the National Academy of Sciences, 110(15), 5791–5796. https://doi.org/10.1073/pnas.1217220110.

    Article  MathSciNet  MATH  Google Scholar 

  • DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical Association, 69(345), 121–132. https://doi.org/10.1080/01621459.1974.10480137.

    Article  MATH  Google Scholar 

  • Dhooge, A., Govaerts, W., Kuznetsov, Y., Meijer, H., & Sautois, B. (2008). New features of the software matcont for bifurcation analysis of dynamical systems. Mathematical and Computer Modelling of Dynamical Systems, 14(2), 147–175.

    MathSciNet  MATH  Google Scholar 

  • Elmhirst, T. (2004). Sn-equivariant symmetry-breaking bifurcations. International Journal of Bifurcation and Chaos, 14(03), 1017–1036.

    MathSciNet  MATH  Google Scholar 

  • Fitch, K., & Leonard, N. E. (2016). Joint centrality distinguishes optimal leaders in noisy networks. IEEE Transactions on Control of Network Systems, 3(4), 366–378. https://doi.org/10.1109/TCNS.2015.2481138.

    Article  MathSciNet  MATH  Google Scholar 

  • FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1(6), 445–466.

    Google Scholar 

  • Franci, A., Drion, G., & Sepulchre, R. (2018). Robust and tunable bursting requires slow positive feedback. Journal of Neurophysiology, 119(3), 1222–1234.

    Google Scholar 

  • Franci, A., Golubitsky, M., Bizyaeva, A., & Leonard, N. E. (2020). A model-independent theory of consensus and dissensus decision making. arXiv preprint, arXiv:1909.05765.

  • Friedkin, N. E., & Johnsen, E. C. (1999). Social influence networks and opinion change. In S. R. Thye, E. J. Lawler, M. W. Macy, & H. A. Walker (Eds.), Advances in group processes, vol 16 (pp. 1–29). UK: Emerald Group Publishing Limited.

    Google Scholar 

  • Frucht, R. (1939). Herstellung von graphen mit vorgegebener abstrakter gruppe. Compositio Mathematica, 6, 239–250.

    MathSciNet  MATH  Google Scholar 

  • Galam, S., & Moscovici, S. (1991). Towards a theory of collective phenomena: Consensus and attitude changes in groups. European Journal of Social Psychology, 21(1), 49–74. https://doi.org/10.1002/ejsp.2420210105.

    Article  Google Scholar 

  • Garulli, A., Giannitrapani, A., & Valentini, M. (2015). Analysis of threshold models for collective actions in social networks. In 2015 European Control Conference (ECC) (pp 211–216). IEEE.

  • Gerkey, B., & Matarić, M. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research, 23(9), 939–954.

    Google Scholar 

  • Gladwell, M. (2006). The tipping point: How little things can make a big difference. USA: Little, Brown.

    Google Scholar 

  • Golubitsky, M., & Schaeffer, D. G. (1985). Singularities and groups in bifurcation theory. Applied mathematical sciences. New York: Springer.

    Google Scholar 

  • Golubitsky, M., & Stewart, I. (2002). The symmetry perspective: From equilibrium to chaos in phase space and physical space (Vol. 200). New York: Springer.

    MATH  Google Scholar 

  • Golubitsky, M., Stewart, I., & Schaeffer, D. (1988). Singularities and groups in bifurcation theory. New York: Springer.

    MATH  Google Scholar 

  • Granovetter, M. (1978). Threshold models of collective behavior. American Journal of Sociology, 83(6), 1420–1443.

    Google Scholar 

  • Gray, R., Franci, A., Srivastava, V., & Leonard, N. (2018). Multi-agent decision-making dynamics inspired by honeybees. IEEE Transactions on Control of Networked Systems, 5(2), 793–806.

    MATH  Google Scholar 

  • Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544.

    Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience. USA: MIT press.

    Google Scholar 

  • Kempe, D., Kleinberg, J., & Tardos, É. (2003). Maximizing the spread of influence through a social network. In Proceedings of the Ninth ACM SIGKDD international conference on knowledge discovery and data mining (pp 137–146).

  • Leonard, N. E., Shen, T., Nabet, B., Scardovi, L., Couzin, I. D., & Levin, S. A. (2012). Decision versus compromise for animal groups in motion. Proceedings of the National Academy of Sciences, 109(1), 227–232.

    Google Scholar 

  • Li, L., Scaglione, A., Swami, A., & Zhao, Q. (2013). Consensus, polarization and clustering of opinions in social networks. IEEE Journal on Selected Areas in Communications, 31(5), 1072–1083. https://doi.org/10.1109/JSAC.2013.130609.

    Article  Google Scholar 

  • Lim, Y., Ozdaglar, A., and Teytelboym, A. (2015). A simple model of cascades in networks. Working Paper, Tech. Rep.

  • Macy, M., Deri, S., Ruch, A., & Tong, N. (2019). Opinion cascades and the unpredictability of partisan polarization. Science Advances, 5(8), eaax0754.

    Google Scholar 

  • Macy, M., Kitts, J., Flache, A., & Benard, S. (2003). Polarization in dynamic networks: A hopfield model of emergent structure. In Dynamic social network modeling and analysis (pp. 162–173). National Academies Press, Washington DC.

    Google Scholar 

  • Mateo, D., Horsevad, N., Hassani, V., Chamanbaz, M., & Bouffanais, R. (2019). Optimal network topology for responsive collective behavior. Science Advances, 5, eaau0999.

    Google Scholar 

  • McCarty, N. (2019). Polarization: What everyone needs to know. Oxford: Oxford University Press.

    Google Scholar 

  • Nabet, B., Leonard, N. E., Couzin, I. D., & Levin, S. A. (2009). Dynamics of decision making in animal group motion. Journal of Nonlinear Science, 19, 399–435.

    MathSciNet  MATH  Google Scholar 

  • Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533.

    MathSciNet  MATH  Google Scholar 

  • Pilditch, T. (2017). Opinion cascades and echo-chambers in online networks: A proof of concept agent-based model. Cognitive science society.

  • Pinkoviezky, I., Couzin, I. D., & Gov, N. (2018). Collective conflict resolution in groups on the move. Physical Review E, 97(3), 032304.

    Google Scholar 

  • Pitonakova, L., Crowder, R., & Bullock, S. (2018). The information-cost-reward framework for understanding robot swarm foraging. Swarm Intelligence, 12(1), 71–96.

    Google Scholar 

  • Reina, A., Marshall, J. A. R., Trianni, V., & Bose, T. (2017). Model of the best-of-N nest-site selection process in honeybees. Physical Review E, 95(5), 052411.

    Google Scholar 

  • Reverdy, P., & Koditschek, D. (2018). A dynamical system for prioritizing and coordinating motivations. SIAM Journal on Applied Dynamical Systems, 17(2), 1683–1715.

    MathSciNet  MATH  Google Scholar 

  • Reverdy, P., Vasilopoulos, V., & Koditschek, D. E. (2021). Motivation dynamics for autonomous composition of navigation tasks. IEEE Transactions on Robotics, 37(4). In press.

  • Robert, A. (1997). The dissemination of culture: A model with local convergence and global polarization. Journal of Conflict Resolution, 41(2), 203–226. https://doi.org/10.1177/0022002797041002001.

    Article  Google Scholar 

  • Rosa, D., & Giua, A. (2013). A non-progressive model of innovation diffusion in social networks. In 52nd IEEE conference on decision and control (CDC) (pp. 6202–6207). IEEE.

  • Rossi, W., Como, G., & Fagnani, F. (2017). Threshold models of cascades in large-scale networks. IEEE Transactions on Network Science and Engineering, 6(2), 158–172.

    MathSciNet  Google Scholar 

  • Salehi, M., Sharma, R., Marzolla, M., Magnani, M., Siyari, P., & Montesi, D. (2015). Spreading processes in multilayer networks. IEEE Transactions on Network Science and Engineering, 2(2), 65–83.

    Google Scholar 

  • Schelling, T. (2006). Micromotives and macrobehavior. USA: WW Norton & Company.

    Google Scholar 

  • Schranz, M., Umlauft, M., Sende, M., & Elmenreich, W. (2020). Swarm robotic behaviors and current applications. Frontiers in Robotics and AI, 7, 36.

    Google Scholar 

  • Stephenson, K., & Zelen, M. (1989). Rethinking centrality: Methods and examples. Social Networks, 11(1), 1–37.

    MathSciNet  Google Scholar 

  • Talamali, M. S., Marshall, J. A. R., Bose, T., & Reina, A. (2019). Improving collective decision accuracy via time-varying cross-inhibition. In 2019 International conference on robotics and automation (ICRA) (pp. 9652–9659). IEEE.

  • Traniello, J. (1989). Foraging strategies of ants. Annual Review of Entomology, 34(1), 191–210.

    Google Scholar 

  • Valente, T. (1995). Network models of the diffusion of innovations. Models and Methods in Social Network Analysis, 28, 98–116.

    Google Scholar 

  • Valentini, G., Ferrante, E., & Dorigo, M. (2017). The best-of-n problem in robot swarms: Formalization, state of the art, and novel perspectives. Frontiers in Robotics and AI, 4, 9.

    Google Scholar 

  • Wang, K., & Michel, N. (1994). Robustness and perturbation analysis of a class of nonlinear systems with applications to neural networks. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 41(1), 24–32.

    MathSciNet  MATH  Google Scholar 

  • Wang, L., Ames, A., & Egerstedt, M. (2017). Safety barrier certificates for collisions-free multirobot systems. IEEE Transactions on Robotics, 33(3), 661–674.

    Google Scholar 

  • Watts, D. (2002). A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences, 99(9), 5766–5771.

    MathSciNet  MATH  Google Scholar 

  • Watts, D., & Strogatz, S. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    MATH  Google Scholar 

  • Yağan, O., & Gligor, V. (2012). Analysis of complex contagions in random multiplex networks. Physical Review E, 86(3), 036103.

    Google Scholar 

  • Zedadra, O., Jouandeau, N., Seridi, H., & Fortino, G. (2017). Multi-agent foraging: State-of-the-art and research challenges. Complex Adaptive Systems Modeling, 5(1), 1–24.

    Google Scholar 

  • Zhong, Y., & Leonard, N. E. (2019). A continuous threshold model of cascade dynamics. In 2019 IEEE 58th Conference on Decision and Control (CDC) (pp. 1704–1709). IEEE.

  • Zhong, Y., Srivastava, V., & Leonard, N. E. (2020). Influence spread in the heterogeneous multiplex linear threshold model. arXiv preprint, arXiv:2008.04383.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Franci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research has been supported in part by NSF grant CMMI-1635056, ONR grant N00014-19-1-2556, ARO grant W911NF-18-1-0325, DGAPA-UNAM PAPIIT grant IN102420, Conacyt grant A1-S-10610, and by NSF Graduate Research Fellowship DGE-2039656. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franci, A., Bizyaeva, A., Park, S. et al. Analysis and control of agreement and disagreement opinion cascades. Swarm Intell 15, 47–82 (2021). https://doi.org/10.1007/s11721-021-00190-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-021-00190-w

Keywords

Navigation