Skip to main content

Reaching a Consensus via Krause Mean Processes in Multi-agent Systems: Quadratic Stochastic Operators

  • Conference paper
  • First Online:
Progress on Difference Equations and Discrete Dynamical Systems (ICDEA 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 341))

Included in the following conference series:

Abstract

A multi-agent system is a system composed of multiple interacting so-called intelligent agents who possibly have different information and/or diverging interests. The agents could be robots, humans or human teams. Opinions are at the basis of human behavior, and can be seen as the internal state of individuals that drives a certain action. Opinion dynamics is a process of individual opinions, in which a group of interacting agents continuously fuse their opinions on the same issue based on established rules to reach a consensus in the final stage. To some extent, the Krause mean process is a general model of opinion sharing dynamics in which the opinions are represented by vectors. In this paper, we present an opinion sharing dynamics by using positive quadratic stochastic operators and establish the consensus in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida, R., Girejko, E., Machado, L., Malinowska, A., Martins, N.: Application of predictive control to the Hegselmann-Krause model. Math. Meth. Appl. Sci. 41, 9191–9202 (2018)

    Article  MathSciNet  Google Scholar 

  2. Berger, R.L.: A necessary and sufficient condition for reaching a consensus using DeGroot’s method. J. Amer. Stat. Assoc. 76, 415–418 (1981)

    Article  MathSciNet  Google Scholar 

  3. Bernstein, S.: Solution of a mathematical problem connected with the theory of heredity. Ann. Math. Statist. 13, 53–61 (1942)

    Article  MathSciNet  Google Scholar 

  4. Cao, M., Morse, A.S., Anderson, B.D.O.: Reaching a consensus in a dynamically changing environment: a graphical approach. SIAM J. Control Optim. 47(2), 575–600 (2008)

    Article  MathSciNet  Google Scholar 

  5. Chatterjee, S., Seneta, E.: Towards consensus: some convergence theorems on repeated averaging. J. Appl. Prob. 14, 89–97 (1977)

    Article  MathSciNet  Google Scholar 

  6. De Groot, M.H.: Reaching a consensus. J. Amer. Stat. Assoc. 69, 118–121 (1974)

    Article  Google Scholar 

  7. Ganihodzhaev, N.: On stochastic processes generated by quadratic operators. J. Theoretical Prob. 4, 639–653 (1991)

    Article  MathSciNet  Google Scholar 

  8. Ganikhodjaev, N., Akin, H., Mukhamedov, F.: On the ergodic principle for Markov and quadratic stochastic processes and its relations. Linear Algebra App. 416, 730–741 (2006)

    Article  MathSciNet  Google Scholar 

  9. Ganikhodzhaev, R., Mukhamedov, F., Rozikov, U.: Quadratic stochastic operators and processes: results and open problems. Inf. Dim. Anal. Quan. Prob. Rel. Top. 14(2), 279–335 (2011)

    Article  MathSciNet  Google Scholar 

  10. Girejko, E., Machado, L., Malinowska, A., Martins, N.: Krause’s model of opinion dynamics on isolated time scales. Math. Meth. Appl. Sci. 39, 5302–5314 (2016)

    Article  MathSciNet  Google Scholar 

  11. Girejko, E., Machado, L., Malinowska, A., Martins, N.: On consensus in the Cucker-Smale type model on isolated time scales. Discrete Contin. Dyn. Syst. S 11(1), 77–89 (2018)

    Article  MathSciNet  Google Scholar 

  12. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence: models, analysis and simulation. J. Art. Soc. Social Sim. 5(3), 1–33 (2002)

    Google Scholar 

  13. Hegselmann, R., Krause, U.: Opinion dynamics driven by various ways of averaging. Comp. Econ. 25, 381–405 (2005)

    Article  Google Scholar 

  14. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 985–1001 (2003)

    Article  MathSciNet  Google Scholar 

  15. Kesten, H.: Quadratic transformations: A model for population growth I. Adv. App. Prob. 2, 1–82 (1970)

    Article  MathSciNet  Google Scholar 

  16. Kolokoltsov, V.: Nonlinear Markov Processes and Kinetic Equations. Cambridge University Press (2010)

    Google Scholar 

  17. Krause, U.: A discrete nonlinear and non-autonomous model of consensus formation. In: Elaydi, S., et al. (eds.) Communications in Difference Equations, pp. 227–236. Gordon and Breach, Amsterdam (2000)

    Google Scholar 

  18. Krause, U.: Compromise, consensus, and the iteration of means. Elem. Math. 64, 1–8 (2009)

    Article  MathSciNet  Google Scholar 

  19. Krause, U.: Markov chains, Gauss soups, and compromise dynamics. J. Cont. Math. Anal. 44(2), 111–116 (2009)

    Article  MathSciNet  Google Scholar 

  20. Krause, U.: Opinion dynamics—local and global. In: Liz, E., Manosa, V. (eds.) Proceedings of the Workshop Future Directions in Difference Equations, pp. 113–119. Universidade de Vigo, Vigo (2011)

    Google Scholar 

  21. Krause, U.: Positive Dynamical Systems in Discrete Time: Theory, Models, and Applications. Walter de Gruyter (2015)

    Google Scholar 

  22. Lyubich, Y.I.: Mathematical Structures in Population Genetics. Springer (1992)

    Google Scholar 

  23. Lu, J., Yu, X., Chen, G., Yu, W.: Complex Systems and Networks: Dynamics. Springer, Controls and Applications (2016)

    Google Scholar 

  24. Malinowska, A., Odzijewicz, T.: Optimal control of discrete-time fractional multi-agent systems. J. Comput. Appl. Math. 339, 258–274 (2018)

    Article  MathSciNet  Google Scholar 

  25. Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–182 (2005)

    Article  MathSciNet  Google Scholar 

  26. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  27. Pulka, M.: On the mixing property and the ergodic principle for non-homogeneous Markov chains. Linear Algebra App 434, 1475–1488 (2011)

    Article  MathSciNet  Google Scholar 

  28. Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  29. Saburov, M.: Ergodicity of nonlinear Markov operators on the finite dimensional space. Non. Anal. Theo. Met. Appl. 143, 105–119 (2016)

    Article  MathSciNet  Google Scholar 

  30. Saburov, M.: Ergodicity of \(\mathbf{p}-\)majorizing quadratic stochastic operators. Markov Processes Relat. Fields 24(1), 131–150 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Saburov, M.: Ergodicity of \(\mathbf{p}-\)majorizing nonlinear Markov operators on the finite dimensional space. Linear Algebra Appl. 578, 53–74 (2019)

    Article  MathSciNet  Google Scholar 

  32. Saburov, M., Saburov, Kh: Reaching a consensus in multi-agent systems: a time invariant nonlinear rule. J. Educ. Vocat. Res. 4(5), 130–133 (2013)

    Article  MathSciNet  Google Scholar 

  33. Saburov, M., Saburov, Kh: Mathematical models of nonlinear uniform consensus. ScienceAsia 40(4), 306–312 (2014)

    Article  Google Scholar 

  34. Saburov, M., Saburov, Kh: Reaching a nonlinear consensus: polynomial stochastic operators. Inter. J. Cont. Auto. Sys. 12(6), 1276–1282 (2014)

    Article  MathSciNet  Google Scholar 

  35. Saburov, M., Saburov, Kh: Reaching a nonlinear consensus: a discrete nonlinear time-varying case. Inter. J. Sys. Sci. 47(10), 2449–2457 (2016)

    Article  MathSciNet  Google Scholar 

  36. Saburov, M., Saburov, Kh: Reaching consensus via polynomial stochastic operators: a general study. Springer Proc. Math. Statist. 212, 219–230 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Saburov, M., Saburov, Kh: Mathematical models of nonlinear uniformly consensus II. J. Appl. Nonlinear Dyn. 7(1), 95–104 (2018)

    Article  MathSciNet  Google Scholar 

  38. Saburov, M., Yusof, N.A.: Counterexamples to the conjecture on stationary probability vectors of the second-order Markov chains. Linear Algebra Appl. 507, 153–157 (2016)

    Article  MathSciNet  Google Scholar 

  39. Saburov, M., Yusof, N.: The structure of the fixed point set of quadratic operators on the simplex. Fixed Point Theory 19(1), 383–396 (2018)

    Article  MathSciNet  Google Scholar 

  40. Saburov, M., Yusof, N.: On uniqueness of fixed points of quadratic stochastic operators on a 2D simplex. Methods Funct. Anal. Topol. 24(3), 255–264 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Sarymsakov, T., Ganikhodjaev, N.: Analytic methods in the theory of quadratic stochastic processes. J. Theoretical Prob. 3, 51–70 (1990)

    Article  Google Scholar 

  42. Seneta, E.: Nonnegative Matrices and Markov Chains. Springer (1981)

    Google Scholar 

  43. Touri, B., Nedić, A.: Product of random stochastic matrices. IEEE Trans. Autom. Control 59(2), 437–448 (2014)

    Article  MathSciNet  Google Scholar 

  44. Tsitsiklis, J.N.: Problems in Decentralized Decision Making and Computation. Ph.D. thesis, Department of Electrical Engineering and Computer Science, MIT (1984)

    Google Scholar 

  45. Tsitsiklis, J., Bertsekas, D., Athans, M.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)

    Article  MathSciNet  Google Scholar 

  46. Ulam, S.: A Collection of Mathematical Problems. New-York, London (1960)

    Google Scholar 

Download references

Acknowledgements

This work was supported by American University of the Middle East, Kuwait. The authors are greatly indebted to the reviewer for several useful suggestions and comments which improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MANSUR SABUROV .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Candan, T., SABUROV, M., Ufuktepe, Ü. (2020). Reaching a Consensus via Krause Mean Processes in Multi-agent Systems: Quadratic Stochastic Operators. In: Baigent, S., Bohner, M., Elaydi, S. (eds) Progress on Difference Equations and Discrete Dynamical Systems. ICDEA 2019. Springer Proceedings in Mathematics & Statistics, vol 341. Springer, Cham. https://doi.org/10.1007/978-3-030-60107-2_22

Download citation

Publish with us

Policies and ethics