Skip to main content
Log in

High purity Mn5O8 nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Developing electrodes with high specific energy by using inexpensive manganese oxides is of great importance for aqueous electrochemical energy storage (EES) using non-Li charge carriers such as Na-or K-ions. However, the energy density of aqueous EES devices is generally limited by their narrow thermodynamic potential window (~1.23 V). In this paper, the synthesis of high purity layered Mn5O8 nanoparticles through solid state thermal treatment of Mn3O4 spinel nanoparticles, resulting in a chemical formula of [Mn 2+2 ] [Mn 4+3 O82–], evidenced by Rietveld refinement of synchrotron- based X-ray diffraction, has been reported. The electro-kinetic analyses obtained from cyclic voltammetry measurements in half-cells have demonstrated that Mn5O8 electrode has a large overpotential (~ 0.6 V) towards gas evolution reactions, resulting in a stable potential window of 2.5 V in an aqueous electrolyte in half-cell measurements. Symmetric full-cells fabricated using Mn5O8 electrodes can be operated within a stable 3.0 V potential window for 5000 galvanostatic cycles, exhibiting a stable electrode capacity of about 103 mAh/g at a C-rate of 95 with nearly 100% coulombic efficiency and 96% energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu S, Cui Y, Liu N. The path towards sustainable energy. Nature Materials, 2016, 16(1): 16–22

    Article  Google Scholar 

  2. Grey C P, Tarascon J M. Sustainability and in situ monitoring in battery development. Nature Materials, 2016, 16(1): 45–56

    Article  Google Scholar 

  3. Kim S W, Seo D H, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Advanced Energy Materials, 2012, 2(7): 710–721

    Article  Google Scholar 

  4. Ma X, Chen H, Ceder G. Electrochemical properties of monoclinic NaMnO2. Journal of the Electrochemical Society, 2011, 158(12): A1307–A1312

    Article  Google Scholar 

  5. Sauvage F, Laffont L, Tarascon J M, Baudrin E. Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorganic Chemistry, 2007, 46(8): 3289–3294

    Article  Google Scholar 

  6. Whitacre J F, Tevar A, Sharma S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochemistry Communications, 2010, 12(3): 463–466

    Article  Google Scholar 

  7. Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 2015, 350(6263): 938–943

    Article  Google Scholar 

  8. Xu K, Wang C S. Batteries: widening voltage windows. Nature Energy, 2016, 1: 16161

    Article  Google Scholar 

  9. Shan X, Charles D S, Lei Y, Qiao R, Wang G, Yang W, Feygenson M, Su D, Teng X. Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nature Communications, 2016, 7: 13370

    Article  Google Scholar 

  10. Toby B H, Von Dreele R B. GSAS-II: the genesis of a modern opensource all purpose crystallography software package. Journal of Applied Crystallography, 2013, 46(2): 544–549

    Article  Google Scholar 

  11. Oswald H R, Feitknecht W, Wampetich M J. Crystal data of Mn5O8 and Cd2Mn3O8. Nature, 1965, 207(4992): 72

    Article  Google Scholar 

  12. Gao T, Norby P, Krumeich F, Okamoto H, Nesper R, Fjellvag H. Synthesis and properties of layered-structured Mn5O8 nanorods. Journal of Physical Chemistry C, 2010, 114(2): 922–928

    Article  Google Scholar 

  13. Yeager M P, Du W, Wang Q, Deskins N A, Sullivan M, Bishop B, Su D, Xu W, Senanayake S D, Si R, Hanson J, Teng X. Pseudocapacitive hausmannite nanoparticles with (101) facets: synthesis, characterization, and charge-transfer mechanism. Chem-SusChem, 2013, 6(10): 1983–1992

    Google Scholar 

  14. Dhaouadi H, Ghodbane O, Hosni F, Touati F. Nanoparticles: synthesis, characterization, and dielectric properties. ISRN Spectroscopy, 2012, 67(4): 1152–1153

    Google Scholar 

  15. Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abruña H D, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials, 2013, 12(6): 518–522

    Article  Google Scholar 

  16. Jung S-K, Kim H, Cho M G, Cho S-P, Lee B, Kim H, Park Y-U, Hong J, Park K-Y, Yoon G, Seong W M, Cho Y, Oh M H, Kim H, Gwon H, HwangI, Hyeon T, Yoon W-S, Kang K. Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nature Energy, 2017, 2, 16208

    Article  Google Scholar 

  17. Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. Journal of Physical Chemistry B, 1997, 101(39): 7717–7722

    Article  Google Scholar 

  18. Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature, 2009, 458(7235): 190–193

    Article  Google Scholar 

  19. Yu X W, Manthiram A. Performance enhancement and mechanistic studies of room-temperature sodium-sulfur batteries with a carboncoated functional nafion separator and a Na2S/activated carbon nanofiber cathode. Chemistry of Materials, 2016, 28(3): 896–905

    Article  Google Scholar 

  20. Zheng J M, Yan P F, KanWH, Wang C M, Manthiram A. A spinelintegrated P2-type layered composite: high-rate cathode for sodiumion batteries. Journal of the Electrochemical Society, 2016, 163(3): A584–A591

    Article  Google Scholar 

  21. Burke A. The present and projected performance and cost of doublelayer and pseudo-capacitive ultracapacitors for hybrid vehicle applications. In: 2005 IEEE Vehicle Power and Propulsion Conference. Chicago, 2005, 356–366

    Chapter  Google Scholar 

  22. Nagasubramanian G, Jungst R G, Doughty D H. Impedance, power, energy, and pulse performance characteristics of small commercial Li-ion cells. Journal of Power Sources, 1999, 83(1–2): 193–203

    Article  Google Scholar 

  23. Li Z, Young D, Xiang K, Carter W C, Chiang Y M. Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/ Na0.44MnO2 system. Advanced Energy Materials, 2013, 3(3): 290–294

    Article  Google Scholar 

  24. Chen Z, Augustyn V, Jia X L, Xiao Q F, Dunn B, Lu Y F. Highperformance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano, 2012, 6(5): 4319–4327

    Article  Google Scholar 

  25. Wang X L, Li G, Chen Z, Augustyn V, Ma X M, Wang G, Dunn B, Lu Y F. High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes. Advanced Energy Materials, 2011, 1(6): 1089–1093

    Article  Google Scholar 

  26. Nesbitt H W, Banerjee D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. American Mineralogist, 1998, 83(3-4): 305–315

    Article  Google Scholar 

  27. Zhuang Z, Sheng W, Yan Y. Synthesis of monodispere Au@Co3O4-core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Advanced Materials, 2014, 26(23): 3950–3955

    Article  Google Scholar 

  28. Jeong D, Jin K, Jerng S E, Seo H, Kim D, Nahm S H, Kim S H, Nam K T. Mn5O8 nanoparticles as efficient water oxidation catalysts at neutral pH. ACS Catalysis, 2015, 5(8): 4624–4628

    Article  Google Scholar 

  29. Takashima T, Hashimoto K, Nakamura R. Mechanisms of pHdependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts. Journal of the American Chemical Society, 2012, 134(3): 1519–1527

    Article  Google Scholar 

  30. Takashima T, Hashimoto K, Nakamura R. Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. Journal of the American Chemical Society, 2012, 134(44): 18153–18156

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences under Award # DESC0010286 (XS, FG, XT). This research used resources of the Advanced Photon Source, a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, X., Guo, F., Xu, W. et al. High purity Mn5O8 nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage. Front. Energy 11, 383–400 (2017). https://doi.org/10.1007/s11708-017-0485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-017-0485-3

Keywords

Navigation