Skip to main content
Log in

Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

This paper presents an experimental analysis of a single pass solar air collector with, and without using baffle fin. The heat transfer coefficient between the absorber plate and air can be considerably increased by using artificial roughness on the bottom plate and under the absorber plate of a solar air heater duct. An experimental study has been conducted to investigate the effect of roughness and operating parameters on heat transfer. The investigation has covered the range of Reynolds number Re from 1259 to 2517 depending on types of the configuration of the solar collectors. Based on the experimental data, values of Nusselt number Nu have been determined for different values of configurations and operating parameters. To determine the enhancement in heat transfer and increment in thermal efficiency, the values of Nusselt have been compared with those of smooth duct under similar flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeh H M, Lin T T. Efficiency improvement of flat-plate solar air heaters. Energy, 1996, 21(6): 435–443

    Article  Google Scholar 

  2. Sparrow E M, Tien K K. Forced convection heat transfer at an inclined and yawed square flat plate—application to solar collectors. Journal of Heat Transfer, 1977, 99(4): 507–512

    Article  Google Scholar 

  3. Simate I N. Optimization of mixed mode and indirect mode natural convection solar dryers. Renewable Energy, 2003, 28(3): 435–453

    Article  Google Scholar 

  4. Sharma A, Chen C R, Vu Lan V. Solar-energy drying systems: a review. Renewable & Sustainable Energy Reviews, 2009, 13(6–7): 1185–1210

    Article  Google Scholar 

  5. Garg H P, Kumar R. Studies on semi-cylindrical solar tunnel dryers: thermal performance of collector. Applied Thermal Engineering, 2000, 20(2): 115–131

    Article  Google Scholar 

  6. Montero I, Blanco J, Miranda T, Rojas S, Celma A R. Design, construction and performance testing of a solar dryer for agroindustrial by-products. Energy Conversion and Management, 2010, 51(7): 1510–1521

    Article  Google Scholar 

  7. Smitabhindu R, Janjai S, Chankong V. Optimization of a solarassisted drying system for drying bananas. Renewable Energy, 2008, 33(7): 1523–1531

    Article  Google Scholar 

  8. Akpinar E K, Koçyigit F. Experimental investigation of thermal performance of solar air heater having different obstacles on absorber plates. International Communications in Heat and Mass Transfer, 2010, 37(4): 416–421

    Article  Google Scholar 

  9. Karsli S. Performance analysis of new-design solar air collectors for drying applications. Renewable Energy, 2007, 32(10): 1645–1660

    Article  Google Scholar 

  10. Romdhane B S. The air solar collectors: Comparative study, introduction of baffles to favor the heat transfer. Solar Energy, 2007, 81(1): 139–149

    Article  Google Scholar 

  11. Omojaro A P, Aldabbagh L B Y. Experimental performance of single and double pass solar air heater with fins and steel wire mesh as absorber. Applied Energy, 2010, 87(12): 3759–3765

    Article  Google Scholar 

  12. Naphon P. On the performance and entropy generation of the double-pass solar air heater with longitudinal fins. Renewable Energy, 2005, 30(9): 1345–1357

    Article  Google Scholar 

  13. Nwosu N P. Employing exergy-optimized pin fins in the design of an absorber in a solar air heater. Energy, 2010, 35(2): 571–575

    Article  Google Scholar 

  14. El-Sebaii A A, Aboul-Enein S, Ramadan M R I, Shalaby S M, Moharram B M. Thermal performance investigation of double pass-finned plate solar air heater. Applied Energy, 2011, 88(5): 1727–1739

    Article  Google Scholar 

  15. Hachemi A. Experimental study of thermal performance of offset rectangular plate fin absorber-plates. Renewable Energy, 1999, 17(3): 371–384

    Article  Google Scholar 

  16. Karim M A, Hawlader M N A. Development of solar air collectors for drying applications. Energy Conversion and Management, 2004, 45(3): 329–344

    Article  Google Scholar 

  17. Lin W, Gao W, Liu T. A parametric study on the thermal performance of cross-corrugated solar air collectors. Applied Thermal Engineering, 2006, 26(10): 1043–1053

    Article  Google Scholar 

  18. Gao W, Lin W, Liu T, Xia C. Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters. Applied Energy, 2007, 84(4): 425–441

    Article  Google Scholar 

  19. Peng D, Zhang X, Dong H, Lv K. Performance study of a novel solar air collector. Applied Thermal Engineering, 2010, 30(16): 2594–2601

    Article  Google Scholar 

  20. Moummi N, Youcef-Ali S, Moummi A, Desmons J Y. Energy analysis of a solar air collector with rows of fins. Renewable Energy, 2004, 29(13): 2053–2064

    Article  Google Scholar 

  21. Andoh H Y, Gbaha P, Koua B K, Koffi P M E, Touré S. Thermal performance study of a solar collector using a natural vegetable fiber, coconut coir, as heat insulation. Energy for Sustainable Development, 2010, 14(4): 297–301

    Article  Google Scholar 

  22. Chabane F, Moummi N, Benramache S, Tolba A S. Experimental study of heat transfer and an effect the tilt angle with variation of the mass flow rates on the solar air heater. International Journal of Science and Engineering Investigations, 2012, 1(9): 61–65

    Google Scholar 

  23. Chabane F, Moummi N, Benramache S. Experimental performance of solar air heater with internal fins inferior an absorber plate: in the region of Biskra. International Journal of Energy & Technology, 2012, 4: Paper 33-2012 (1,6)

  24. Chabane F, Moummi N, Brima A, Benramache S. Thermal efficiency analysis of a single-flow solar air heater with different mass flow rates in a smooth plate. Frontiers in Heat and Mass Transfer, 2013, 4(1): 013006

    Article  Google Scholar 

  25. Chabane F, Moummi N, Benramache S, Belahssen O, Bensahal D. Nusselt number correlation of SAH. Journal of Power Technologies, 2013, 93(2): 100–110

    Google Scholar 

  26. Chabane F, Moummi N, Benramache S, Bensahal D, Belahssen O, Lemmadi F Z. Thermal performance optimization of a flat plate solar air heater. International Journal of Energy & Technology, 2013, 5(8): 1–6

    Google Scholar 

  27. Chabane F, Moummi N, Benramache S. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater. Journal of Advertising Research, 2014, 5(2): 183–192

    Google Scholar 

  28. Close D J, Pryor T L. The behaviour of adsorbent energy storage beds. Solar Energy, 1976, 18(4): 287–292

    Article  Google Scholar 

  29. Liu C H, Sparrow E M. Convective-radiative interaction a parallel plate channel-application to air-operated solar collectors. International Journal of Heat and Mass Transfer, 1980, 23(8): 1137–1146

    Article  Google Scholar 

  30. Seluck M K. Solar Air Heaters and Their Applications. New York: Academic Press, Inc., 1977, 155–182

    Google Scholar 

  31. Tan H M, Charters W W S. Experimental investigation of forcedconvective heat transfer for fully developed turbulent flow in a rectangular duct with asymmetric heating. Solar Energy, 1970, 13(1): 121–125

    Article  Google Scholar 

  32. Whillier A. Plastic covers for solar collectors. Solar Energy, 1963, 7(3): 148–151

    Article  Google Scholar 

  33. Duffie J A, Beckman W A. Solar Engineering of Thermal Processes, 3rd ed. John Wiley & Sons, 2006

  34. Tonui J K, Tripanagnostopoulos Y. Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renewable Energy, 2007, 32(4): 623–637

    Article  Google Scholar 

  35. Gao W, Lin W, Liu T, Xia C. Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters. Applied Energy, 2007, 84(4): 425–441

    Article  Google Scholar 

  36. Mohamad A A. High efficiency solar air heater. Solar Energy, 1997, 60(2): 71–76

    Article  Google Scholar 

  37. Verma S K, Prasad B N. Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters. Renewable Energy, 2000, 20(1): 19–36

    Article  Google Scholar 

  38. Yeh H M. Theory of baffled solar air heaters. Energy, 1992, 17(7): 697–702

    Article  Google Scholar 

  39. Akpinar E K, Koçyiğit F. Experimental investigation of thermal performance of solar air heater having different obstacles on absorber plates. International Communications in Heat and Mass Transfer, 2010, 37(4): 416–421

    Article  Google Scholar 

  40. Akpinar E K, Kocyiğit F. Energy and exergy analysis of a new flatplate solar air heater having different obstacles on absorber plates. Applied Energy, 2010, 87(11): 3438–3450

    Article  Google Scholar 

  41. McAdams WH. Heat Transmission. New York: McGraw-Hill, 1954

    Google Scholar 

  42. Klein S A. Calculation of flat-plate collector loss coefficients. Solar Energy, 1975, 17(1): 79–80

    Article  Google Scholar 

  43. Karsli S. Performance analysis of new-design solar air collectors for drying applications. Renewable Energy, 2007, 32(10): 1645–1660

    Article  Google Scholar 

  44. Kurtbas I, Durmus A. Efficiency and exergy analysis of a new solar air heater. Renewable Energy, 2004, 29(9): 1489–1501

    Article  Google Scholar 

  45. Esen H. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Building and Environment, 2008, 43(6): 1046–1054

    Article  Google Scholar 

  46. Holman J P. Heat Transfer, 7th ed. New York: McGraw-Hill Book Co., 1990

    Google Scholar 

  47. Saini R P, Saini J S. Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughened element. International Journal of Heat and Mass Transfer, 1997, 40(4): 973–986

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foued Chabane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabane, F., Hatraf, N. & Moummi, N. Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater. Front. Energy 8, 160–172 (2014). https://doi.org/10.1007/s11708-014-0321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-014-0321-y

Keywords

Navigation