Skip to main content
Log in

Calci-microbialite as a potential source rock and its geomicrobiological processes

  • Research Article
  • Published:
Frontiers of Earth Science in China Aims and scope Submit manuscript

Abstract

The calci-mircobialite is a special carbonate buildup, which is formed due to the activities of different kinds of microbes. Abundant microfossils preserved in the microbialite show the high-level productivity during deposition, while characteristic sedimentary minerals and geochemical compositions suggest an anoxic marine environment for organic burial. The high-level productivity and anoxic sedimentary environment favor the efficient preservation of organic matter and thus the formation of source rocks. On these points, microbialites could be one of the potential hydrocarbon source rocks, awaiting further geobiological investigation and exploration. Precambrian and some of the great transitional stages in Phanerozoic are critical periods when microbialites were well developed. Widespread microbialites have been found in North and South China. Bitumen observed in many outcrops of Precambrian and late Devonian microbialites further raises the possibility of the calci-microbialite as a potential hydrocarbon source rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold G L, Anbar A D, Barling J, et al (2004). Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 304(5667): 87–90

    Article  Google Scholar 

  • Baud A, Atudorei N V, Marcoux J (1999). The Permian-Triassic boundary interval (PTBI) in Oman: Carbon isotope and facies changes. In: Yin H F, Tong J N, eds. Proceedings of the International Conference on Pangea and the Paleozoic-Mesozoic Transition. Wuhan: China University of Geosciences, 88–89

    Google Scholar 

  • Baud A, Cirilli S, Marcoux J (1997). Biotic response to mass extinction: The lowermost Triassic microbialites. Facies, 36: 238–242

    Google Scholar 

  • Baud A, Richoz S, Cirilli S, et al (2001). Anachronistic facies after mass extinction: The basal Triassic stromatolites and microbial mounds of western and central Taurus area (south-west Turkey). In: Isparta University, ed. The 4th International Symposium on Eastern Mediterranean Geology. Turkey: Isparta, 12

  • Baud A, Richoz S, Marcoux J (2005). Calcimicrobial cap rocks from the basal Triassic units of the Taurus (SW Turkey), an anachronistic facies before the biotic recovery. Comptes Rendus Palevol, 4(6–7): 569–582

    Article  Google Scholar 

  • Baud A, Richoz S, Pruss S (2007). The lower Triassic anachronistic carbonate facies in space and time. Global and Planetary Change, 55(1–3): 81–89

    Article  Google Scholar 

  • Burne R V, Moore I S (1987). Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios, 2(3): 241–254

    Article  Google Scholar 

  • Cao R J, Yuan X L (2003). Brief history and current status of stromatolite study in China. Acta Micropalaeontologica Sinica, 20(1): 5–14 (in Chinese with English abstract)

    Google Scholar 

  • Chen J B (1993). Progress and problems in research on stromatolites. In: Zhu S X, ed. The Stromatolites of China. Tianjin: Tianjin Univ Press, 205–214 (in Chinese with English abstract)

    Google Scholar 

  • Dai Y D, Chen M E, Wang R (1996). Development and perspective of research for microbialites. Advance in Earth Sciences, 11(2): 209–215 (in Chinese with English abstract)

    Google Scholar 

  • Dupraz C, Visscher P T, Baumgartner L K, et al (2004). Microbemineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology, 51: 745–765

    Article  Google Scholar 

  • Heydari E, Hassanzadeh J, Wade W J, et al (2003). Permian-Triassic boundary interval in the Abadeh Section of Iran with implications for mass extinction: Part 1. Sedimentology. Palaeogeography, Palaeoclimatology, Palaeoecology, 193(3–4): 405–423

    Article  Google Scholar 

  • Hips K, Haas J (2006). Calcimicrobial stromatolites at the Permian-Triassic boundary in a western Tethyan section, Bükk Mountains, Hungary. Sedimentary Geology, 185: 239–253

    Article  Google Scholar 

  • Kershaw S, Zhang J, Lan G (1999). A microbialite carbonate crust at the Permian-Triassic boundary in south China, and its palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 146: 1–18

    Article  Google Scholar 

  • Konishi Y, Prince J, Knott B (2001). The fauna of thrombolitic microbialites, Lake Clifton, western Australia. Hydrobiologia, 457(1–3): 39–47

    Article  Google Scholar 

  • Liang Y Z, Zhu S X, Gao Z J, et al (1995). New progress in the study of stratomalites-microbialite. Regional Geology of China, 1: 57–65 (in Chinese with English abstract)

    Google Scholar 

  • Liang Y Z, Wang Y, Du R L (1993). Structural deformation of microstromatolite in the Bayan Obo Group of Inner Moncolla and its geological significance. Regional Geology of China, 3: 229–238 (in Chinese with English abstract)

    Google Scholar 

  • Liang Y Z, Cao R J, Zhang L Y, et al (1984). Pseudogymnosolenaceae of Late Precambrian in China. Beijing: Geological Publishing House, 1–200 (in Chinese with English abstract)

    Google Scholar 

  • Lehrmann D J (1999). Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang basin, South China. Geology, 27(4): 359–362

    Article  Google Scholar 

  • Lehrmann D J, Yang W, Wei J Y, et al (2001). Lower Triassic peritidal cyclic limestone: An example of anachronistic carbonate facies from the Great Bank of Guizhou, Nanpanjiang basin, Guizhou Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 173: 103–123

    Article  Google Scholar 

  • Marcoux J, Baud A (1986). The Permo-Triassic boundary in the Antalya nappes (western Taurides, Turkey). Memoria della Societa Geologica Italiana, 34: 243–252

    Google Scholar 

  • Qiu S Y, Liang Y Z, Cao R J, et al (1992). Late Precambrian Stromatolites and Related Mineral Product. Xi’an: Northwest University Press (in Chinese)

    Google Scholar 

  • Riding R, Liang L Y (2005). Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219: 101–115

    Article  Google Scholar 

  • Sano H, Nakashima K (1997). Lowermost Triassic (Griesbachian) microbial bindstone-cementstone facies, Southwest Japan. Facies, 36: 1–24

    Article  Google Scholar 

  • Sheehan P M, Harris M T (2004). Microbialite resurgence after the Late Ordovician extinction. Nature, 430: 75–78

    Article  Google Scholar 

  • Shen J W, Webb G E (2004a). Famennian (Upper Devonian) calcimicrobial (Renalcis) reef at Miaomen, Guilin, Guangxi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 204: 373–394

    Article  Google Scholar 

  • Shen J W, Webb G E (2004b). Famennian (upper Devonian) stromatolite reefs at Shatang, Guilin, Guangxi, South China. Sedimentary Geology, 170(1–2): 63–84

    Article  Google Scholar 

  • Thiel V, Merz-Preiß M, Reitner J, et al (1997). Biomarker studies on microbial carbonates: Extractable lipids of a cacifying cyanobacterial mat (Everglades, USA). Facies, 36: 163–172

    Article  Google Scholar 

  • Walter M R (1994). Stromatolites: The main geological source of information on the evolution of early benthos. In: Bengtson S, ed. Early Life on Earth. New York: Columbia U P, 270–286

    Google Scholar 

  • Wang Y B, Tong J N, Wang J S, et al (2005). Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance. Chinese Science Bulletin, 50: 665–671

    Article  Google Scholar 

  • Wignall P B, Twitchett R J (1996). Oceanic anoxia and the end Permian mass extinction. Science, 272: 1155–1158

    Article  Google Scholar 

  • Wignall P B, Twitchett R J (1999). Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end-Permian mass extinction. Sedimentology, 46(2): 303–316

    Article  Google Scholar 

  • Wignall P B, Twitchett R J (2002). Permian-Triassic sedimentology of Jameson Land, East Greenland: Incised submarine channels in an anoxic basin. Journal of the Geological Society, 159: 691–703

    Article  Google Scholar 

  • Xie S C, Gong Y M, Tong J N, et al (2006). Transition from paleontology to geobiology. Chinese Science Bulletin, 51(19): 2327–2336 (in Chinese)

    Article  Google Scholar 

  • Xie S C, Pancost R D, Yin H F, et al (2005). Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 434: 494–497

    Article  Google Scholar 

  • Yan X Q, Meng F W, Yuan X L (2006). Geochemical characteristics of the cherts of the Neoproterozoic Jiudingshan Formation in northern Jiangsu and Anhui Provinces. Acta Micropalaeontologica Sinica, 23(3): 295–302 (in Chinese with English abstract)

    Google Scholar 

  • Zhu S X (1993). The Stromatolites of China. Tianjin: Tianjin Univ Press, 1–263 (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Yongbiao.

Additional information

__________

Translated from Earth Science-Journal of China University of Geosciences, 2007, 32(6): 797-802 [译自: 地球科学-中国地质大学学报]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Wang, Y., Chen, L. et al. Calci-microbialite as a potential source rock and its geomicrobiological processes. Front. Earth Sci. China 1, 438–443 (2007). https://doi.org/10.1007/s11707-007-0054-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-007-0054-x

Keywords

Navigation