Skip to main content
Log in

Biomarker studies on microbial carbonates: Extractable lipids of a Calcifying Cyanobacterial mat (Everglades, USA)

  • Published:
Facies Aims and scope Submit manuscript

Summary

Biomarker investigations are applied to the free lipid fractions of a naturally grown freshwater microbial mat, constructed by calcifying cyanobacteria (Scytonema sp. andSchizothrix sp.). The absolute and relative concentrations of hydrocarbons, free alcohols and carboxylic acids are studied and their probable biological precursors are discussed. A significant signal of cyanobacterial lipids is recognized by the strong predominance ofn-heptadecane (C17),n-heptadecene, two monomethyl-heptadecanes, and the pentacyclic triterpenoid diploptene. Their occurrences parallel the lipid distributions found in pure cultured cyanobacteria and in recent cyanobacterial mats grown in particular environments (hypersaline, lagoonal, hot spring). The observed compound signature appears to be a suitable reference for environments, where cyanobacteria are directly associated with theloci of carbonate precipitation and thus, rock formation. In the studied material, a significant contribution of organic matter from other sources, especially higher plants is characterized by the occurrence of several specific marker compounds, namely lup-20(29)-ene-3-ol, high molecular weightn-alkanes and carboxylic acids. Although these components comprise a notably high portion of the sample’s lipid inventory, they are shown to be distinguished easily from the signal left by the predominant mat building organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bird, C.W., Lynch, J.M., Pirt, F.J., Reid, W.W., Brooks, C.J.W., &Middelditch, B.S. (1971): Steroids and squalene inMethylococcus capsulatus grown on methane.—Nature230, 473–474.

    Article  Google Scholar 

  • Bird, C.W., Lynch, J.M., Pirt, S.J., &Reid, W.W. (1971): The identification of hop-22(29)-ene in prokaryotic organisms.— Tetrah. Lett.34, 3189–3190.

    Article  Google Scholar 

  • Boon, J.J., de Leeuw, J.W., Hoeck, V.G., &Vosjan, J.H. (1977) The significance of taxonomical value of iso- and anteisomonoenic fatty acids and branched ß-hydroxy acids inDesulfovibrio desulfuricans.—J. Bacteriol.129, 1183–1191.

    Google Scholar 

  • Boon, J.J., Hines, H., Burlingame, A.L., Klok, J., Rijpastra, I.C., De Leeuw, J.W., Edmunds, K.E., &Eglinton, G. (1983): Organic geochemical studies of Solar Lake laminated cyanobacterial mats.—In:Bjoroy, M. et al. (eds.): Advances in Organic Geochemistry 1981.—207–227, New York (Wiley).

    Google Scholar 

  • Boon, J.J., &De Leeuw, J.W. (1987): Organic geochemical aspects of cyanobacterial mats.—In:Fay, P. &Van Baalen, C. (eds.): The Cyanobacteria.—471–492. Amsterdam (Elsevier)

    Google Scholar 

  • Boudou, J.P., Trichet, J., Robinson, N., &Brassel, S.C. (1986): Lipid composition of a recent Polynesian microbial mat sequence.—Org. Geochem.10, 705–709.

    Article  Google Scholar 

  • Bouvier, P., Rohmer, M., Benveniste, P., &Ourisson, P. (1976): 8(14)-steroids in the bacteriumMethylococcus capsulatus.— Biochem. J.159, 267–271.

    Google Scholar 

  • Cohen, Z., &Vonshak, A. (1991): Fatty acid composition ofSpirulina andSpirulina-like cyanobacteria in relation to their chemotaxonomy.—Phytochemistry30, 205–206.

    Article  Google Scholar 

  • Cooper, W.J., &Blumer, M. (1968): Linear, iso and anteiso fatty acids in recent sediments of the North Atlantic.—Deep-Sea Res. 15, 535–540.

    Google Scholar 

  • Cranwell, P.A., Jaworski, G.H.M., &Bickley, H.M. (1990): Hydrocarbons, sterols, esters and fatty acids in six freshwater chlorophytes.—Phytochemistry29, 145–151.

    Article  Google Scholar 

  • Davis, J.B. (1967): Paraffinic hydrocarbons in the sulfatereducing bacteriumDesulfovibrio desulfuricans.—Chem. Geol.3, 155–160.

    Article  Google Scholar 

  • de Rosa, M., Gambacorta, A., &Minale, L. (1971): Bacterial triterpanes.—Chem. Commun.1971, 619–620.

    Google Scholar 

  • Dobson, G., Ward, D.M., Robinson, N., Eglinton, G. (1988): Biogeochemistry of hot spring environments: extractable lipids of a cyanobacterial mat.—Chem. Geol.68, 155–179.

    Article  Google Scholar 

  • Eglinton, G., &Hamilton, R.J. (1967): Leaf epicuticular waxes. —Science156, 1322–1335.

    Article  Google Scholar 

  • Eglinton, G. (1973): Chemical fossils: a combined organic geochemical and environmental approach.—Pure & Appl. Chem.34, 611–632.

    Google Scholar 

  • Fowler, M.G., &Douglas, A.G. (1987): Saturated hydrocarbon biomarkers in oils of Late Precambrian age from Eastern Siberia.—Org. Geochem.11, 201–213.

    Article  Google Scholar 

  • Gelpi, E., Schneider, H., Mann, J., &Oró, J. (1970): Hydrocarbons of geochemical significance in microscopic algae.— Phytochem.9, 603–612.

    Article  Google Scholar 

  • Gleason, P.J. (1972): The origin, sedimentation and stratigraphy of a calcitic mud located in the southern fresh-water Everglades. —PhD. Thesis, Pennsylvania State Univ., 335 pp., Univ. Park

    Google Scholar 

  • Goossens, H., Rupstra, W.I.C., Düren, R.R., de Leeuw, J.W. &Schenck, P.A. (1986): Bacterial contribution to sedimentary organic matter; a comparative study of lipid moieties in bacteria and recent sediments.—Org. Geochem.10, 683–696.

    Article  Google Scholar 

  • Grimalt, J.O., de Wit, R., Teixidor, P., &Albaiges, J. (1992): Lipid biogeochemistry ofPhormidium andMicrocoleus mats. —Org. Geochem.19, 509–530.

    Article  Google Scholar 

  • Han, J., &Calvin, M. (1969): Hydrocarbon distribution of algae and bacteria, and microbial activity in sediments.—Proc. Nat. Acad. Sci. USA64, 436–443, Washington D.C.

    Article  Google Scholar 

  • Han, J., McCarthy, E.D., Calvin, M. & Benn, M.H. (1968): Hydrocarbon constituents of the blue-green algaeNostoc muscurum, Anacystis nidulans, Phormidium luridum andChlorogloea fritschii.—J. Chem. Soc., 2785–2791.

  • Han, J., McCarthy, E.D., van Hoeven, W., Calvin, M. &Bradlay, W.H. (1980): Organic geochemical studies, II. A preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria, and in a recent lake sediment.— Proc. Nat. Acad. Sci. USA59, 29–37, Washington D.C.

    Article  Google Scholar 

  • Hefter, J. (1992): Biogeochemierezenter Mikrobialithe.—Unpubl. Dipl. Thesis, Geol.-Paläont. Inst. Univ. Hamburg., 124 p.

  • Hefter, J., Thiel, V., Jenisch, A., Galling, U., Kempe, S., Michaelis, W. (1993): Biomarker indications for microbial contribution to Recent and Late Jurassic carbonate deposits.—Facies29, 93–106.

    Google Scholar 

  • Jenisch, A., Haake, B., &Michaelis, W. (1993): Sterol Fluxes to the deep Arabian Sea as indicators for organic matter composition. —Mitt. Geol.-Paläontol. Inst. Univ. Hamburg76, 141–156.

    Google Scholar 

  • Kaneda, T. (1967): Fatty acids in the genus Bacillus.Iso- andanteiso-fatty acids as characteristic constituents of lipids in 10 species.—J. Bacteriol.93, 894–903.

    Google Scholar 

  • Karrer, W., Cherbuliez, E. & Eugster, C.H. (1977): Konstitution und Vorkommen der organischen Pflanzenstoffe.—1038 p., Stuttgart.

  • Kenyon, C. (1972): Fatty acid composition of unicellular strains of blue-green algae.—J. Bacteriol.109, 827–834.

    Google Scholar 

  • Keupp, H., Koch, R., &Leinfelder, R. (1990): Steuerungsprozesse der Entwicklung von Oberjura-Spongiolithen Süddeutschlands: Kenntnisstand, Probleme und Perspektiven.—Facies23, 141–174.

    Google Scholar 

  • Kolattukudy, P.E. (1970): Plant waxes.—Lipids5, 259–275.

    Article  Google Scholar 

  • McCaffrey, M.A., Farrington, J.W., &Repeta, D.J. (1989): Geochemical implications of the lipid composition ofThioploca spp. from the Peru upwelling region.—Org. Geochem.14, 61–68.

    Article  Google Scholar 

  • Merrit, M.V., Rosenstein, S.P., Lott, C., Chou, R.H., &Allen, M.M. (1991): A comparison of the major lipid classes and fatty acid composition of marine unicellular cyanobacteria with freshwater species.—Arch. Microbiol155, 107–113.

    Article  Google Scholar 

  • Merz, M.U. (1992): The biology of carbonate precipitation by cyanobacteria.—Facies26, 81–102.

    Google Scholar 

  • Merz, M.U., &Zankl, H. (1993): The influence of culture conditions on the growth and sheath development of calcifying cyanobacteria.—Facies29, 75–80.

    Google Scholar 

  • Merz, M.U., Schlue, W.R., &Zankl, H. (1995): pH-measurements in the sheath of calcifying, filamentous cyanobacteria. —Bull. Inst. Oceanogr. Monaco, Spec. Vol. 14, 281–287.

    Google Scholar 

  • Michaelis, W., &Albrecht, P. (1979): Molecular fossils of archaebacteria in kerogen.—Naturwiss.66, 420–421.

    Article  Google Scholar 

  • Michaelis, W., Jenisch, A., Richnow, H.H., Kruse, U. & Mycke, B. (1988): Organofazies des Ölschiefers von Messel.—In:Franzen, J.L. & Michaelis, W. (eds.): Der eozäne Messelsee. —Cour. Forsch.-Inst. Senckenberg107, 89–103.

  • Michaelis, W., Schümann, P., Ittekkot, V., &Konuk, T. (1987): Sterol markers for organic matter fluxes in the Black Sea.— Mitt. Geol. Paläont. Inst. Univ. Hamburg62, 89–98.

    Google Scholar 

  • Mycke, B., Narjes, F., &Michaelis, W. (1987): Bacteriohopanetetrol from chemical degradation of an oil shale kerogen.— Nature326, 179–181.

    Article  Google Scholar 

  • Ourisson, G., Albrecht, P., &Rohmer, M. (1979): The hopanoids. Paleochemistry and biochemistry of a group of natural products.— Pure & Appl. Chem.51, 709–729.

    Google Scholar 

  • Paoletti, C., Pushparaj, B., Florenzano, G., Capella, P. &Lercker, G. (1976): Unsaponifiable matter of green and blue-green algal lipids as a factor of biochemical differentiation of their biomasses: I. Total unsaponifiable and hydrocarbon fraction.—Lipids11, 258–265.

    Google Scholar 

  • Patterson, G.W. (1971): The distribution of sterols in algae.— Lipids6, 120–127.

    Article  Google Scholar 

  • Peters, K.E., &Moldowan, J.M. (1993): The Biomarker Guide-Interpreting Molecular Fossils in Petroleum and Ancient Sediments.—363 p., Englewood Cliffs, New Jersey (Prentice Hall).

    Google Scholar 

  • Pflug, H.D. (1978): Yeast-like microfossils detected in oldest sediments of the Earth.—Naturwiss.65, 611–615.

    Article  Google Scholar 

  • Philp, R.P., Brown, S., &Calvin, M. (1978): Hydrocarbon and fatty acid distributions in recently deposited algal mats at Laguna Guerrero, Baja California.—In:Krumbein, W.E. (ed.): Environmental Biogeochemistry and Geomicrobiology. —1, 255–271, Michigan (Ann Arbor Sci. Publ.).

    Google Scholar 

  • Reitner, J. (1993): Modern Cryptic Microbialite/Metazoan Facies from Lizard Island (Great Barrier Reef, Australia) Formation and Concepts.—Facies29, 3–40.

    Google Scholar 

  • Reitner, J., Neuweiler, F., Flajs, G., Vigener, M., Keupp, H., Meischner, D., Paul, J., Warnke, K., Weller, H., Dingle, P., Hensen, C., Schäfer, P., Gauret, P., Leinfelder, R.R., Hüssner, H., Kaufmann, B. (1995): Mudmounds: A polygenetic spectrum of fine-grained carbonate buildups.—Facies32, 1–70.

    Google Scholar 

  • Rohmer, M., Bouvier-Nave, P., &Ourisson, G. (1984): Distribution of hopanoid triterpenesin pokaryotes.—J. Gen. Microbiol.130, 1137–1150.

    Google Scholar 

  • Sallal, A.K., Ghannoum, M.A., Al-Hasan, R.H., Nimer, N.A., Radwan, S.S. (1987): Lanosterol and diacylglycerophosphocholines in lipids from whole cells and thylakoids of the cyanobacteriumChlorogloeopsis fritschii.—Arch. Microbiol.148, 1–7.

    Article  Google Scholar 

  • Salt, T.A., Shiua, Xu, Patterson, G.W., Adler, J.H. (1991): Diversity of sterol biosynthetic capacity in the Caryophyllidae. —Lipids26, 604–613.

    Article  Google Scholar 

  • Shiea, J., Brassell, S.C., &Ward, D.M. (1990): Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: A direct biogenic source for branched alkanes in ancient sediments?.—Org. Geochem.15, 223–231.

    Article  Google Scholar 

  • Shiea, J., Brassel, S.C., &Ward, D.M. (1991): Comparative analysis of extractable lipids in hot spring microbial mats and their component photosynthetic bacteria.—Org. Geochem.17, 309–319.

    Article  Google Scholar 

  • Summons, R.E. (1987): Branched alkanes from ancient and modern sediments: Isomer discrimination by GC/MS with multiple reaction monitoring.—Org. Geochem.11, 281–289.

    Article  Google Scholar 

  • Thiele, O.W. (1979): Lipide, Isoprenoide mit Steroiden—415 p., Hamburg (Thieme).

    Google Scholar 

  • Tissot, B.P., &Welte, D.H. (1984): Petroleum Formation and Occurrence.—699 p., Berlin (Springer).

    Google Scholar 

  • Tulloch, A.P. (1976): Chemistry of waxes of higher plants.—In:Kolattukudy, P.E. (ed.): Chemistry and Biochemistry of Natural Waxes.—235–287, Amsterdam (Elsevier).

    Google Scholar 

  • Volkman, J.K. (1986): A review of sterol markers for marine and terrigenous organic matter.—Org. Geochem.9, 83–99.

    Article  Google Scholar 

  • Zeng, Y.B., Ward, D.M., Brassell, S.C., &Eglinton, G. (1992)): Biogeochemistry of hot spring environments 2. Lipid composition of Yellowstone (Wyoming, U.S.A.) cyanobacterial andChloroflexus mats.—Chem. Geol.95, 27–345.

    Google Scholar 

  • Zeng, Y.B., Ward, D.M., Brassell, S.C., &Eglinton, G. (1992b): Biogeochemistry of hot spring environments 3. Apolar and polar lipids in the biologically active layers of a cyanobacterial mat.—Chem. Geol.95, 347–360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiel, V., Merz-Preiß, M., Reitner, J. et al. Biomarker studies on microbial carbonates: Extractable lipids of a Calcifying Cyanobacterial mat (Everglades, USA). Facies 36, 163–172 (1997). https://doi.org/10.1007/BF02536882

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536882

Keywords

Navigation