Skip to main content
Log in

Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends

  • Mini-Review
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

In the last decade, the surface plasmon resonance-enhanced solar water splitting (SWS) has been actively investigated for improved hydrogen production. In this mini-review, we briefly introduce the mechanisms for plasmon-enhanced SWS and then review some representative studies related to these mechanisms. In addition, we also briefly discuss how metal oxide geometry affects the SWS activity in combined metal-semiconductor nanostructures. Finally, we summarize the recent discoveries and proposed a future vision for plasmon-enhanced SWS with metal oxide nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tachibana Y, Vayssieres L, Durrant J R. Artificial photosynthesis for solar water-splitting. Nature Photonics, 2012, 6(8): 511–518

    Article  Google Scholar 

  2. Atabaev T S, Ajmal M, Hong N H, et al. Ti-doped hematite thin films for efficient water splitting. Applied Physics A: Materials Science & Processing, 2015, 118(4): 1539–1542

    Article  Google Scholar 

  3. Ahmad H, Kamarudin S K, Minggu L J, et al. Hydrogen from photo-catalytic water splitting process: A review. Renewable & Sustainable Energy Reviews, 2015, 43: 599–610

    Article  Google Scholar 

  4. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38

    Article  Google Scholar 

  5. Atabaev T S, Vu H H T, Ajmal M, et al. Dual-mode spectral convertors as a simple approach for the enhancement of hematite’s solar water splitting efficiency. Applied Physics A: Materials Science & Processing, 2015, 119(4): 1373–1377

    Article  Google Scholar 

  6. Walter M G, Warren E L, McKone J R, et al. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473

    Article  Google Scholar 

  7. Tamirat A G, Rick J, Dubale A A, et al. Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horizons, 2016, 1(4): 243–267

    Article  Google Scholar 

  8. Chen S, Thind S S, Chen A. Nanostructured materials for water splitting-state of the art and future needs: A mini-review. Electrochemistry Communications, 2016, 63: 10–17

    Article  Google Scholar 

  9. Wolcott A, Smith W A, Kuykendall T R, et al. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 2009, 5(1): 104–111

    Article  Google Scholar 

  10. Wagner F T, Somorjai G A. Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. Journal of the American Chemical Society, 1980, 102 (17): 5494–5502

    Article  Google Scholar 

  11. Formal F L, Gratzel M, Sivula K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Advanced Functional Materials, 2010, 20(7): 1099–1107

    Article  Google Scholar 

  12. Thuy T N T, Atabaev T S, Vu H H T, et al. TiO2 thin films sensitized with upconversion phosphor for efficient solar water splitting. Journal of Nanoscience and Nanotechnology, 2017, 17 (10): 7647–7650

    Article  Google Scholar 

  13. Wang J, Du C, Peng Q, et al. Enhanced photoelectrochemical water splitting performance of hematite nanorods by Co and Sn doping. International Journal of Hydrogen Energy, 2017, 42(49): 29140–29149

    Article  Google Scholar 

  14. Tsege E L, Atabaev T S, Hossain MA, et al. Cu-doped flower-like hematite nanostructures for efficient water splitting applications. Journal of Physics and Chemistry of Solids, 2016, 98: 283–289

    Article  Google Scholar 

  15. Atabaev T S, Lee D H, Hong N H. Fabrication of TiO2/CuO photoelectrode with enhanced solar water splitting activity. Functional Materials Letters, 2017, 10(06): 1750084

    Article  Google Scholar 

  16. Yu J, Hai Y, Cheng B. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. The Journal of Physical Chemistry C, 2011, 115(11): 4953–4958

    Article  Google Scholar 

  17. Xu F, Mei J, Zheng M, et al. Au nanoparticles modified branched TiO2 nanorod array arranged with ultrathin nanorods for enhanced photoelectrochemical water splitting. Journal of Alloys and Compounds, 2017, 693: 1124–1132

    Article  Google Scholar 

  18. Atabaev T S, Atabaev S. Titania coated hematite nanostructures for solar water splitting applications. Nano Life, 2016, 6(2): 1650008

    Article  Google Scholar 

  19. Warren S C, Thimsen E. Plasmonic solar water splitting. Energy & Environmental Science, 2012, 5(1): 5133–5146

    Article  Google Scholar 

  20. Atabaev T S, Hossain M A, Lee D, et al. Pt-coated TiO2 nanorods for photoelectrochemical water splitting applications. Results in Physics, 2016, 6: 373–376

    Article  Google Scholar 

  21. Ye W, Long R, Huang H, et al. Plasmonic nanostructures in solar energy conversion. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(5): 1008–1021

    Article  Google Scholar 

  22. Hartland G V. Optical studies of dynamics in noble metal nanostructures. Chemical Reviews, 2011, 111(6): 3858–3887

    Article  Google Scholar 

  23. Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213

    Article  Google Scholar 

  24. Link S, El-Sayed M A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 1999, 103(21): 4212–4217

    Article  Google Scholar 

  25. Huang T, Xu X H N. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using singlenanoparticle plasmonic microscopy and spectroscopy. Journal of Materials Chemistry, 2010, 20(44): 9867–9876

    Article  Google Scholar 

  26. López-Lozano X, Barron H, Mottet C, et al. Aspect-ratio-and size-dependent emergence of the surface-plasmon resonance in gold nanorods — an ab initio TDDFT study. Physical Chemistry Chemical Physics, 2014, 16(5): 1820–1823

    Article  Google Scholar 

  27. Zhang P, Wang T, Gong J. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Advanced Materials, 2015, 27(36): 5328–5342

    Article  Google Scholar 

  28. Ingram D B, Linic S. Water splitting on composite plasmonicmetal/ semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. Journal of the American Chemical Society, 2011, 133(14): 5202–5205

    Article  Google Scholar 

  29. Zhang Q, Thrithamarassery Gangadharan D, Liu Y, et al. Recent advancements in plasmon-enhanced visible light-driven water splitting. Journal of Materiomics, 2017, 3(1): 33–50

    Article  Google Scholar 

  30. Cushing S K, Li J, Meng F, et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. Journal of the American Chemical Society, 2012, 134(36): 15033–15041

    Article  Google Scholar 

  31. Christopher P, Ingram D B, Linic S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: Photochemistry mediated by Ag surface plasmons. The Journal of Physical Chemistry C, 2010, 114(19): 9173–9177

    Article  Google Scholar 

  32. Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 2006, 110(14): 7238–7248

    Article  Google Scholar 

  33. Pala R A, White J, Barnard E, et al. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Advanced Materials, 2009, 21(34): 3504–3509

    Article  Google Scholar 

  34. Govorov A O, Zhang H, Demir H V, et al. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today, 2014, 9(1): 85–101

    Article  Google Scholar 

  35. Besteiro L V, Govorov A O. Amplified generation of hot electrons and quantum surface effects in nanoparticle dimers with plasmonic hot spots. The Journal of Physical Chemistry C, 2016, 120(34): 19329–19339

    Article  Google Scholar 

  36. Zhang H, Govorov A O. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. The Journal of Physical Chemistry C, 2014, 118 (14): 7606–7614

    Article  Google Scholar 

  37. Pu Y C, Wang G, Chang K D, et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Letters, 2013, 13(8): 3817–3823

    Article  Google Scholar 

  38. Chen K, Feng X, Hu R, et al. Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays. Journal of Alloys and Compounds, 2013, 554: 72–79

    Article  Google Scholar 

  39. Zhang Z, Zhang L, Hedhili M N, et al. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Letters, 2013, 13(1): 14–20

    Article  Google Scholar 

  40. Peng C, Wang W, Zhang W, et al. Surface plasmon-driven photoelectrochemical water splitting of TiO2 nanowires decorated with Ag nanoparticles under visible light illumination. Applied Surface Science, 2017, 420: 286–295

    Article  Google Scholar 

  41. Hsu Y K, Fu S Y, Chen M H, et al. Facile synthesis of Pt nanoparticles/ZnO nanorod arrays for photoelectrochemical water splitting. Electrochimica Acta, 2014, 120: 1–5

    Article  Google Scholar 

  42. Wei Y, Ke L, Kong J, et al. Enhanced photoelectrochemical watersplitting effect with a bent ZnO nanorod photo anode decorated with Ag nanoparticles. Nanotechnology, 2012, 23(23): 235401

    Article  Google Scholar 

  43. Thomann I, Pinaud B A, Chen Z, et al. Plasmon enhanced solar-tofuel energy conversion. Nano Letters, 2011, 11(8): 3440–3446

    Article  Google Scholar 

  44. Wang L, Zhou X, Nguyen N T, et al. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays. ChemSusChem, 2015, 8 (4): 618–622

    Article  Google Scholar 

  45. Zhang X, Liu Y, Kang Z. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. ACS Applied Materials & Interfaces, 2014, 6(6): 4480–4489

    Article  Google Scholar 

  46. Su F, Wang T, Lv R, et al. Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale, 2013, 5(19): 9001–9009

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NU Social Policy grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timur Sh. Atabaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atabaev, T.S. Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends. Front. Mater. Sci. 12, 207–213 (2018). https://doi.org/10.1007/s11706-018-0413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-018-0413-4

Keywords

Navigation