Skip to main content

Plasmonic Photochemical Water Splitting for Efficient Solar Energy Conversion

  • Chapter
  • First Online:
Progress in Nanophotonics 6

Part of the book series: Nano-Optics and Nanophotonics ((NON))

  • 518 Accesses

Abstract

Photochemical water splitting using solar energy has been widely studied as a promising strategy for clean and sustainable energy production. Localized surface plasmon resonance has been proposed to enhance the efficiency of photochemical water splitting based on its novel properties. This chapter presents recent progress in the development of plasmon-induced water splitting, especially photoelectrochemical water splitting. The mechanisms of plasmonic chemical reactions are introduced, and recent works on emerging strategies for efficient plasmonic water splitting are summarized. Finally, the future prospects of plasmonic water splitting are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.A. Klein, W.A. Beckman, J.A. Duffie, A design procedure for solar heating systems. Solar Energy 18, 113–127 (1976)

    Article  ADS  Google Scholar 

  2. A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, 2003)

    Google Scholar 

  3. Solar splitting of water to hydrogen and oxygen, Allen J. Bard and Marye Anne Fox. Artificial photosynthesis. Acc. Chem. Res. 28, 141–145 (1995)

    Google Scholar 

  4. Y. Tachibana, L. Vayssieres, J.R. Durrant, Artificial photosynthesis for solar water-splitting. Nat. Photon. 6, 511–518 (2012)

    Article  ADS  Google Scholar 

  5. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  ADS  Google Scholar 

  6. T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014)

    Article  Google Scholar 

  7. Meng Ni, Michael K. H. Leung, Dennis Y. C. Leung, and K. Sumathy. A review and recent developments in photocatalytic water-splitting using TiO\(_2\) for hydrogen production. Renew. Sust. Energ. Rev. 11, 401–425 (2007)

    Google Scholar 

  8. Shahed U. M. Khan, Mofareh Al-Shahry, and William B. Ingler. Efficient photochemical water splitting by a chemically modified n-TiO\(_2\). Science 297, 2243–2245 (2002)

    Google Scholar 

  9. O. Teruhisa, M. Takahiro, M. Michio, Photocatalytic activity of S-doped TiO\(_2\) photocatalyst under visible light. Chem. Lett. 32, 364–365 (2003)

    Article  Google Scholar 

  10. Jong Hyeok Park, Sungwook Kim, and Allen J. Bard. Novel carbon-doped TiO\(_2\) nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24–28 (2006)

    Google Scholar 

  11. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Analysis of electronic structures of 3d transition metal-doped TiO\(_2\) based on band calculations. J. Phys. Chem. Solids 63, 1909–1920 (2002)

    Article  ADS  Google Scholar 

  12. A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C.L. Bianchi, R. Psaro, V. Dal Santo, Effect of nature and location of defects on bandgap narrowing in black TiO\(_2\) nanoparticles. J. Am. Chem. Soc. 134, 7600–7603 (2012)

    Article  Google Scholar 

  13. M. Grätzel, Dye-sensitized solar cells. J. Photochem. Photobiol. C 4, 145–153 (2003)

    Article  Google Scholar 

  14. S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011)

    Article  ADS  Google Scholar 

  15. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  ADS  Google Scholar 

  16. Kyeong-Seok. Lee, Mostafa A. El-Sayed, Gold and silver nanoparticles in sensing and imaging sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 110, 19220–19225 (2006)

    Google Scholar 

  17. J. Bosbach, C. Hendrich, F. Stietz, T. Vartanyan, F. Träger, Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: Influence of particle size, shape, and chemical surrounding. Phys. Rev. Lett. 89, 257404 (2002)

    Article  ADS  Google Scholar 

  18. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering \((\)SERS\()\). Phys. Rev. Lett. 78, 1667–1670 (1997)

    Article  ADS  Google Scholar 

  19. A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-enhanced raman scattering. J. Phys. Condens. Matter 4, 1143–1212 (1992)

    Article  ADS  Google Scholar 

  20. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012)

    Article  Google Scholar 

  21. H.J. Simon, D.E. Mitchell, J.G. Watson, Optical second-harmonic generation with surface plasmons in silver films. Phys. Rev. Lett. 33, 1531–1534 (1974)

    Google Scholar 

  22. Martti Kauranen, Anatoly V. Zayats, Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012)

    Google Scholar 

  23. K. Ueno, T. Oshikiri, Q. Sun, X. Shi, H. Misawa, Solid-state plasmonic solar cells. Chem. Rev. 118, 2955–2993 (2018)

    Google Scholar 

  24. Y. Tian, T. Tatsuma, Mechanisms and applications of plasmon-induced charge separation at TiO\(_2\) films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005)

    Article  Google Scholar 

  25. A. Furube, D. Luchao, K. Hara, R. Katoh, M. Tachiya, Ultrafast plasmon-induced electron transfer from gold nanodots into TiO\(_2\) nanoparticles. J. Am. Chem. Soc. 129, 14852–14853 (2007)

    Article  Google Scholar 

  26. J. Li, S.K. Cushing, F. Meng, T.R. Senty, A.D. Bristow, W. Nianqiang, Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photon. 9, 601–607 (2015)

    Article  ADS  Google Scholar 

  27. M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015)

    Article  ADS  Google Scholar 

  28. S.C. Warren, E. Thimsen, Plasmonic solar water splitting. Energy Environ. Sci. 5, 5133–5146 (2012)

    Article  Google Scholar 

  29. Yuchao Zhang, Shuai He, Wenxiao Guo, Yue Hu, Jiawei Huang, Justin R. Mulcahy, and Wei David Wei. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 118, 2927–2954 (2018)

    Google Scholar 

  30. Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Au/TiO\(_2\) superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 136, 458–465 (2014)

    Article  Google Scholar 

  31. Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, H. Misawa, Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO\(_2\) electrode. J. Phys. Chem. Lett. 1, 2031–2036 (2010)

    Article  Google Scholar 

  32. S. Mubeen, J. Lee, N. Singh, S. Kramer, G.D. Stucky, M. Moskovits, An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013)

    Article  ADS  Google Scholar 

  33. Z. Zhang, L. Zhang, M.N. Hedhili, H. Zhang, P. Wang, Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO\(_2\) nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 13, 14–20 (2013)

    Article  ADS  Google Scholar 

  34. N. Szydlo, R. Poirier, I-V and C-V characteristics of Au/TiO\(_2\) Schottky diodes. J. Appl. Phys. 51, 3310–3312 (1980)

    Article  ADS  Google Scholar 

  35. C. Voisin, N. Del Fatti, D. Christofilos, F. Vallée, Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J. Phys. Chem. B 105, 2264–2280 (2001)

    Article  Google Scholar 

  36. G.V. Hartland, Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858–3887 (2011)

    Article  Google Scholar 

  37. G. Zhao, H. Kozuka, T. Yoko, Sol-gel preparation and photoelectrochemical properties of TiO\(_2\) films containing Au and Ag metal particles. Thin Solid Films 277, 147–154 (1996)

    Article  ADS  Google Scholar 

  38. M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Photodetection with active optical antennas. Science 332, 702–704 (2011)

    Article  ADS  Google Scholar 

  39. H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao, Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B 57, 11334–11340 (1998)

    Article  ADS  Google Scholar 

  40. K. Wu, J. Chen, J.R. McBride, T. Lian, Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015)

    Article  ADS  Google Scholar 

  41. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, G. Borghs, Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat. Photon. 3, 283–286 (2009)

    Article  ADS  Google Scholar 

  42. I. Thomann, B.A. Pinaud, Z.B. Chen, B.M. Clemens, T.F. Jaramillo, M.L. Brongersma, Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 11, 3440–3446 (2011)

    Article  ADS  Google Scholar 

  43. Run Shi, Yinhu Cao, Yanjun Bao, Yufei Zhao, Geoffrey I. N. Waterhouse, Zheyu Fang, Li-Zhu Wu, Chen-Ho Tung, Yadong Yin, and Tierui Zhang. Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Adv. Mater. 29, 1700803 (2017)

    Google Scholar 

  44. Zhi Wei Seh, Shuhua Liu, Michelle Low, Shuang-Yuan Zhang, Zhaolin Liu, Adnen Mlayah, and Ming-Yong Han. Janus Au-TiO\(_2\) Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation. Adv. Mater. 24, 2310–2314 (2012)

    Google Scholar 

  45. Jiun-Jen Chen, Jeffrey C. S. Wu, Pin Chieh Wu, and Din Ping Tsai. Plasmonic photocatalyst for H\(_2\) evolution in photocatalytic water splitting. J. Phys. Chem. C 115, 210–216 (2010)

    Google Scholar 

  46. Y. Nishijima, K. Ueno, Y. Kotake, K. Murakoshi, H. Inoue, H. Misawa, Near-infrared plasmon-assisted water oxidation. J. Phys. Chem. Lett. 3, 1248–1252 (2012)

    Article  Google Scholar 

  47. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111–1116 (2011)

    Article  ADS  Google Scholar 

  48. J. LeeJ, S. Mubeen, X. Ji, G.D. Stucky, M. Moskovits, Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 12, 5014–5019 (2012)

    Article  ADS  Google Scholar 

  49. X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, H. Misawa, Enhanced water splitting under modal strong coupling conditions. Nat. Nanotechnol. 13, 953–958 (2018)

    Article  ADS  Google Scholar 

  50. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint of sub]25 nm vias and trenches in polymers. Appl. Phys. Lett. 67, 3114–3116 (1995)

    Article  ADS  Google Scholar 

  51. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, Spectrally-resolved atomic-scale length variations of gold nanorods. J. Am. Chem. Soc. 128, 14226–14227 (2006)

    Article  Google Scholar 

  52. H. Lang, S. Maldonado, K.J. Stevenson, B.D. Chandler, Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles. J. Am. Chem. Soc. 126, 12949–12956 (2004)

    Article  Google Scholar 

  53. Q. Sun, Yu. Han, K. Ueno, A. Kubo, Y. Matsuo, H. Misawa, Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy. ACS Nano 10, 3835–3842 (2016)

    Article  Google Scholar 

  54. Yu. Han, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, H. Misawa, Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy. ACS Nano 10, 10373–10381 (2016)

    Article  Google Scholar 

  55. Michael K. L. Man, Athanasios Margiolakis, Skylar Deckoff-Jones, Takaaki Harada, E. Laine Wong, M. Bala Murali Krishna, Julien Madéo, Andrew Winchester, Sidong Lei, Robert Vajtai, Pulickel M. Ajayan, and Keshav M. Dani. Imaging the motion of electrons across semiconductor heterojunctions. Nat. Nanotechnol. 12, 36–40 (2017)

    Google Scholar 

  56. Jinse Park, P. R. Deshmukh, Youngku Sohn, and Weon Gyu Shin. ZnO-TiO\(_2\) core-shell nanowires decorated with Au nanoparticles for plasmon-enhanced photoelectrochemical water splitting. J. Alloy Compd. 787, 1310–1319 (2019)

    Google Scholar 

  57. H. LiH, Z. Li, Yu. Yanhao, Y. Ma, W. Yang, F. Wang, X. Yin, X. Wang, Surface-plasmon-resonance-enhanced photoelectrochemical water splitting from Au-nanoparticle-decorated 3D TiO\(_2\) nanorod architectures. J. Phys. Chem. C 121, 12071–12079 (2017)

    Article  Google Scholar 

  58. X. Shi, K. Ueno, N. Takabayashi, H. Misawa, Plasmon-enhanced photocurrent generation and water oxidation with a gold nanoisland-loaded titanium dioxide photoelectrode. J. Phys. Chem. C 117, 2494–2499 (2012)

    Article  Google Scholar 

  59. V. Fthenakis, Sustainability of photovoltaics: The case for thin-film solar cells. Renew. Sust. Energ. Rev. 13, 2746–2750 (2009)

    Article  Google Scholar 

  60. K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima, Bactericidal and detoxification effects of TiO\(_2\) thin film photocatalysts. Environ. Sci. Technol. 32, 726–728 (1998)

    Article  ADS  Google Scholar 

  61. Makiko Yamagishi, Shna Kuriki, P. K. Song, and Yuzo Shigesato. Thin film TiO\(_2\) photocatalyst deposited by reactive magnetron sputtering. Thin Solid Films 442, 227–231 (2003)

    Google Scholar 

  62. X. Shi, K. Ueno, T. Oshikiri, H. Misawa, Improvement of plasmon-enhanced photocurrent generation by interference of TiO\(_2\) thin film. J. Phys. Chem. C 117, 24733–24739 (2013)

    Article  Google Scholar 

  63. X. Shi, X. Li, T. Toda, T. Oshikiri, K. Ueno, K. Suzuki, K. Murakoshi, H. Misawa, Interfacial structure-modulated plasmon-induced water oxidation on strontium titanate. ACS Appl. Energy Mater. 3, 5675–5683 (2020)

    Article  Google Scholar 

  64. Y. Zhong, K. Ueno, X. Yuko Mori, T.O. Shi, K. Murakoshi, H. Inoue, H. Misawa, Plasmon-assisted water splitting using two sides of the same SrTiO\(_3\) single-crystal substrate: conversion of visible light to chemical energy. Angew. Chem. Int. Ed. 53, 1–6 (2014)

    Article  Google Scholar 

  65. Y.-C. Yen, J.-A. Chen, O. Sheng, Y.-S. Chen, K.-J. Lin, Plasmon-enhanced photocurrent using gold nanoparticles on a three-dimensional TiO\(_2\) nanowire-web electrode. Sci. Rep. 7, 42524 (2017)

    Article  ADS  Google Scholar 

  66. R. Takakura, T. Oshikiri, X. Kosei Ueno, T.K. Shi, H. Masuda, H. Misawa, Water splitting using a three-dimensional plasmonic photoanode with titanium dioxide nano-tunnels. Green Chemistry 19, 2398–2405 (2017)

    Article  Google Scholar 

  67. E. Orgiu, J. George, J.A. Hutchison, E. Devaux, J.F. Dayen, B. Doudin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, T.W. Ebbesen, Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 14, 1123–1129 (2015)

    Article  ADS  Google Scholar 

  68. J.A. Hutchison, T. Schwartz, C. Genet, E. Devaux, T.W. Ebbesen, Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 51, 1592–1596 (2012)

    Article  Google Scholar 

  69. T. Schwartz, J.A. Hutchison, C. Genet, T.W. Ebbesen, Reversible switching of ultrastrong light-molecule coupling. Phys. Rev. Lett. 106, 196405 (2011)

    Article  ADS  Google Scholar 

  70. A. Ramírez, P. Hillebrand, D. Stellmach, M.M. May, P. Bogdanoff, S. Fiechter, Evaluation of MnO\(_x\), Mn\(_2\)O\(_3\), and Mn\(_3\)O\(_4\) electrodeposited films for the oxygen evolution reaction of water. J. Phys. Chem. C 118, 14073–14081 (2014)

    Article  Google Scholar 

  71. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch, Efficient solar water splitting, exemplified by RuO\(_2\)-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104, 8920–8924 (2000)

    Article  Google Scholar 

  72. L. Liao, Q. Zhang, S. Zhihua, Z. Zhao, Y. Wang, Y. Li, L. Xiaoxiang, D. Wei, G. Feng, Yu. Qingkai, X. Cai, J. Zhao, Z. Ren, H. Fang, F. Robles-Hernandez, S. Baldelli, J. Bao, Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9, 69–73 (2014)

    Article  ADS  Google Scholar 

  73. R. Asai, H. Nemoto, Q. Jia, K. Saito, A. Iwase, A. Kudo, A visible light responsive rhodium and antimony-codoped SrTiO\(_3\) powdered photocatalyst loaded with an IrO\(_2\) cocatalyst for solar water splitting. Chem. Commun. 50, 2543–2546 (2014)

    Article  Google Scholar 

  74. M. Okazaki, Y. Suganami, N. Hirayama, H. Nakata, T. Oshikiri, T. Yokoi, H. Misawa, K. Maeda, Site-selective deposition of a cobalt cocatalyst onto a plasmonic Au/TiO\(_2\) photoanode for improved water oxidation. ACS Appl. Energy Mater. 3, 5142–5146 (2020)

    Article  Google Scholar 

  75. G.P. Singh, K.M. Shrestha, A. Nepal, K.J. Klabunde, C.M. Sorensen, Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting. Nanotechnology 25, 265701 (2014)

    Article  ADS  Google Scholar 

  76. A. Tanaka, K. Teramura, S. Hosokawa, H. Kominami, T. Tanaka, Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO\(_2\) photocatalyst with metal co-catalysts. Chem. Sci. 8, 2574–2580 (2017)

    Article  Google Scholar 

  77. Y. Zhong, K. Ueno, Y. Mori, T. Oshikiri, H. Misawa, Cocatalyst effects on hydrogen evolution in a plasmon-induced water-splitting system. J. Phys. Chem. C 119, 8889–8897 (2015)

    Article  Google Scholar 

  78. Wenbo Hou, Wei Hsuan Hung, Prathamesh Pavaskar, Alain Goeppert, Mehmet Aykol, and Stephen B. Cronin. Photocatalytic conversion of CO\(_2\) to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 1, 929–936 (2011)

    Google Scholar 

  79. T. Oshikiri, K. Ueno, H. Misawa, Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem. Int. Ed. 53, 9802–9805 (2014)

    Article  Google Scholar 

  80. T. Oshikiri, K. Ueno, H. Misawa, Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angew. Chem. Int. Ed. 55, 3942–3946 (2016)

    Article  Google Scholar 

  81. Hayk Harutyunyan, Alex B. F. Martinson, Daniel Rosenmann, Larousse Khosravi Khorashad, Lucas V. Besteiro, Alexander O. Govorov, and Gary P. Wiederrecht. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotechnol. 10, 770–774 (2015)

    Google Scholar 

  82. elucidation of the electron eobility before deep trapping, Yoshiaki Tamaki, Kohjiro Hara, Ryuzi Katoh, M. Tachiya, and Akihiro Furube. Femtosecond visible-to-IR spectroscopy of TiO\(_2\) nanocrystalline films. J. Phys. Chem. C 113, 11741–11746 (2009)

    Google Scholar 

  83. J.S. DuChene, G. Tagliabue, A.J. Welch, W.-H. Cheng, H.A. Atwater, Hot hole collection and photoelectrochemical CO\(_2\) reduction with plasmonic Au/p-GaN photocathodes. Nano Lett. 18, 2545–2550 (2018)

    Article  ADS  Google Scholar 

  84. D. ChenD, Z. Liu, Z. Guo, W. Yan, Y. Xin, Enhancing light harvesting and charge separation of Cu\(_2\)O photocathodes with spatially separated noble-metal cocatalysts towards highly efficient water splitting. J. Mater. Chem. A 6, 20393–20401 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank all contributors of the studies, especially Profs. K. Ueno, K. Murakoshi (Faculty of Science, Hokkaido Univ.), K. Maeda (Department of Chemistry, Tokyo Institute of Technology), Y. Nishijima (Yokohama National Univ.), Q. Sun (Peking University Yangtze Delta Institute of Optoelectronics) and T. Oshikiri (Research Institute for Electronic Science, Hokkaido Univ.) for their valuable collaborations and inspiring discussions. Some of the work described in this article were supported by Nanotechnology Platform (Hokkaido University), and the Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials (Five-Star Alliance) of MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, X., Misawa, H. (2021). Plasmonic Photochemical Water Splitting for Efficient Solar Energy Conversion. In: Yatsui, T. (eds) Progress in Nanophotonics 6. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-030-71516-8_3

Download citation

Publish with us

Policies and ethics