Skip to main content
Log in

Origin of high mechanical quality factor in CuO-doped (K, Na)NbO3-based ceramics

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

The origin of a high mechanical quality in CuO-doped (K, Na)NbO3-based ceramics is addressed by considering the correlations between the lattice positions of Cu ions and the hardening effect in K0.48Na0.52 + xNbO3-0.01CuO ceramics. The Cu ions simultaneously occupy K/Na and Nb sites of these ceramics with x = 0 and 0.02, only occupy the K/Na site of the ceramics with x = −0.02, and mostly form a secondary phase of the ceramics with x = −0.05. The Cu ions lead to the hardening of ceramics with an increase of E C and Q m by only occupying the K/Na site, together with the formation of double hysteresis loops in un-poled compositions. A defect model is proposed to illuminate the origin of a high Q m value, that is, the domain stabilization is dominated by the content of relatively mobile O2− ions in the ceramics, which has a weak bonding with CuK/Na defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerthsen P, Härdtl K H, Schmidt N A. Correlation of mechanical and electrical losses in ferroelectric ceramics. Journal of Applied Physics, 1980, 51(2): 1131

    Article  Google Scholar 

  2. Uchino K, Zheng J H, Chen Y H, et al. Loss mechanisms and high power piezoelectrics. Journal of Materials Science, 2006, 41(1): 217–228

    Article  Google Scholar 

  3. Zhang S, Xia R, Shrout T R. Lead-free piezoelectric ceramics vs PZT? Journal of Electroceramics, 2007, 19(4): 251–257

    Article  Google Scholar 

  4. Rödel J, Jo W, Seifert K T P, et al. Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177

    Article  Google Scholar 

  5. Xiao D Q, Wu J G, Wu L, et al. Investigation on the composition design and properties study of perovskite lead-free piezoelectric ceramics. Journal of Materials Science, 2009, 44(19): 5408–5419

    Article  Google Scholar 

  6. Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126

    Article  Google Scholar 

  7. Härdtl K H. Electrical and mechanical losses in ferroelectric ceramics. Ceramics International, 1982, 8(4): 121–127

    Article  Google Scholar 

  8. Lin D, Kwok K W, Chan H L W. Double hysteresis loop in Cudoped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Applied Physics Letters, 2007, 90(23): 232903 (3 pages)

    Article  Google Scholar 

  9. Gao Y, Uchino K, Viehland D. Effects of thermal and electrical histories on hard piezoelectrics: A comparison of internal dipolar fields and external dc bias. Journal of Applied Physics, 2007, 101 (5): 054109 (6 pages)

    Article  Google Scholar 

  10. Lin D, Kwok KW, Chan H LW. Double hysteresis loop and aging effect in K0.5Na0.5NbO3-K5.4Cu1.3Ta10O9 lead-free ceramics. Journal of the American Ceramic Society, 2009, 92(6): 1362–1365

    Article  Google Scholar 

  11. Carl K, Hardtl K H. Electrical after-effects in Pb(Ti, Zr)O3 ceramics. Ferroelectrics, 1977, 17(1): 473–486

    Article  Google Scholar 

  12. Ren X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nature Materials, 2004, 3(2): 91–94

    Article  Google Scholar 

  13. Zhang L, Ren X. Aging behavior in single-domain Mn-doped BaTiO3 crystals: Implication for a unified microscopic explanation of ferroelectric aging. Physical Review B: Condensed Matter and Materials Physics, 2006, 73: 094121

    Article  Google Scholar 

  14. Tan Q, Li J, Viehland D. Role of lower valent substituent-oxygen vacancy complexes in polarization pinning in potassium-modified lead zirconate titanate. Applied Physics Letters, 1999, 75(3): 418–420

    Article  Google Scholar 

  15. Zhang Y, Li J, Fang D. Oxygen-vacancy-induced memory effect and large recoverable strain in a barium titanate single crystal. Physical Review B: Condensed Matter and Materials Physics, 2010, 82: 064103

    Article  Google Scholar 

  16. Takao H, Saito Y, Aoki Y, et al. Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. Journal of the American Ceramic Society, 2006, 89(6): 1951–1956

    Article  Google Scholar 

  17. Wang H-Q, Dai Y-J, Zhang X-W. Microstructure and hardening mechanism of K0.5Na0.5NbO3 lead-free ceramics with CuO doping sintered in different atmospheres. Journal of the American Ceramic Society, 2012, 95(4): 1182–1184

    Article  Google Scholar 

  18. Park H-Y, Seo I-T, Choi M-K, et al. Microstructure and piezoelectric properties of the CuO-added (Na0.5K0.5)-(Nb0.97Sb0.03)O3 lead-free piezoelectric ceramics. Journal of Applied Physics, 2008, 104(3): 034103 (7 pages)

    Article  Google Scholar 

  19. Su S, Zuo R, Wang X, et al. Sintering, microstructure and piezoelectric properties of CuO and SnO2 co-modified sodium potassium niobate ceramics. Materials Research Bulletin, 2010, 45 (2): 124–128

    Article  Google Scholar 

  20. Park B C, Hong I K, Jang H D, et al. Highly enhanced mechanical quality factor in lead-free (K0.5Na0.5)NbO3 piezoelectric ceramics by co-doping with K5.4Cu1.3Ta10O29 and CuO. Materials Letters, 2010, 64(14): 1577–1579

    Article  Google Scholar 

  21. Li E, Kakemoto H, Wada S, et al. Enhancement of Q m by codoping of Li and Cu to potassium sodium niobate lead-free ceramics. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(5): 980–987

    Article  Google Scholar 

  22. Park H Y, Seo I T, Choi J H, et al. Low-temperature sintering and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. Journal of the American Ceramic Society, 2010, 93(1): 36–39

    Article  Google Scholar 

  23. Alkoy E M, Papila M. Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics. Ceramics International, 2010, 36(6): 1921–1927

    Article  Google Scholar 

  24. Lin D, Kwok K W, Chan H L W. Piezoelectric properties and hardening behavior of K5.4Cu1.3Ta10O29-doped K0.5Na0.5NbO3 ceramics. Journal of Applied Physics, 2008, 103(6): 064105 (5 pages)

    Article  Google Scholar 

  25. Lim J B, Zhang S, Lee H J, et al. Shear-mode piezoelectric properties of modified-(K,Na)NbO3 ceramics for “hard” lead-free materials. Journal of the American Ceramic Society, 2010, 93(9): 2519–2521

    Article  Google Scholar 

  26. Lv Y G, Wang C L, Zhang J L, et al. Modified (K0.5Na0.5)-(Nb0.9Ta0.1)O3 ceramics with high Q m. Materials Letters, 2008, 62 (19): 3425–3427

    Article  Google Scholar 

  27. Matsubara M, Yamaguchi T, Sakamoto W, et al. Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of the American Ceramic Society, 2005, 88(5): 1190–1196

    Article  Google Scholar 

  28. Yang M-R, Tsai C-C, Hong C-S, et al. Piezoelectric and ferroelectric properties of CN-doped K0.5Na0.5NbO3 lead-free ceramics. Journal of Applied Physics, 2010, 108(9): 094103 (5 pages)

    Article  Google Scholar 

  29. Körbel S, Marton P, Elsässer C. Formation of vacancies and copper substitutionals in potassium sodium niobate under various processing conditions. Physical Review B: Condensed Matter and Materials Physics, 2010, 81: 174115

    Article  Google Scholar 

  30. Shigemi A, Wada T. Evaluations of phases and vacancy formation energies in KNbO3 by first-principles calculation. Japanese Journal of Applied Physics, 2005, 44(11): 8048–8054

    Article  Google Scholar 

  31. Zhen Y, Li J F. Abnormal grain growth and new core-shell structure in (K,Na)NbO3-based lead-free piezoelectric ceramics. Journal of the American Ceramic Society, 2007, 90(11): 3496–3502

    Article  Google Scholar 

  32. Zuo R, Ye C, Fang X, et al. Processing and piezoelectric properties of (Na0.5K0.5)0.96Li0.04(Ta0.1Nb0.9)1 − x CuxO3 − 3x/2 lead-free ceramics. Journal of the American Ceramic Society, 2008, 91(3): 914–917

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Feng Liang or Ding-Quan Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, WF., Xiao, DQ., Wu, JG. et al. Origin of high mechanical quality factor in CuO-doped (K, Na)NbO3-based ceramics. Front. Mater. Sci. 8, 165–175 (2014). https://doi.org/10.1007/s11706-014-0245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-014-0245-9

Keywords

Navigation