Skip to main content
Log in

Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

This review article summarizes the new research in solid-state physical chemistry understanding of the microstructure characteristics of semiconductor tin oxide thin films made in the last years in our group. The work mainly focuses on the fabrication technology of semiconductor tin oxides thin films by using pulsed laser deposition (PLD) as well as the application of this technology on new micro- and nanostructured materials. It is an interdisciplinary work that integrates the areas of physics, chemistry and materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chopra K L, Major S, Pandya D K. Transparent conductors — A status review. Thin Solid Films, 1983, 102(1): 1–46

    Article  CAS  Google Scholar 

  2. Kohl D. The role of noble metals in the chemistry of solid-state gas sensors. Sensors and Actuators B: Chemical, 1990, 1(1–6): 158–165

    Article  CAS  Google Scholar 

  3. Abello L, Bochu B, Gaskov A, et al. Structural characterization of nanocrystalline SnO2 by X-ray and Raman spectroscopy. Journal of Solid State Chemistry, 1998, 135(1): 78–85

    Article  CAS  Google Scholar 

  4. Ansari S G, Boroojerdian P, Sainkar S R, et al. Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films, 1997, 295(1–2): 271–276

    Article  CAS  Google Scholar 

  5. Ferrere S, Zaban A, Gregg B A. Dye sensitization of nanocrystalline tin oxide by perylene derivatives. The Journal of Physical Chemistry B, 1997, 101(23): 4490–4493

    Article  CAS  Google Scholar 

  6. Varghese O K, Malhotra L K. Electrode-sample capacitance effect on ethanol sensitivity of nano-grained SnO2 thin films. Sensors and Actuators B: Chemical, 1998, 53(1–2): 19–23

    Article  CAS  Google Scholar 

  7. He Y S, Campbell J C, Murphy R C, et al. Electrical and optical characterization of Sb:SnO2. Journal of Materials Research, 1993, 8(12): 3131–3134

    Article  CAS  Google Scholar 

  8. Wang D, Wen S, Chen J, et al. Microstructure of SnO2. Physical Review B, 1994, 49(20): 14282–14285

    Article  Google Scholar 

  9. Cirera A, Vilà A, Diéguez A, et al. Microwave processing for the low cost, mass production of undoped and in situ catalytic doped nanosized SnO2 gas sensor powders. Sensors and Actuators B: Chemical, 2000, 64(1–3): 65–69

    Article  CAS  Google Scholar 

  10. Sekizawa K, Widjaja H, Maeda S, et al. Low temperature oxidation of methane over Pd catalyst supported on metal oxides. Catalysis Today, 2000, 59(1–2): 69–74

    Article  CAS  Google Scholar 

  11. Dai Z R, Gole J L, Stout J D, et al. Tin oxide nanowires, nanoribbons, and nanotubes. The Journal of Physical Chemistry B, 2002, 106(6): 1274–1279

    Article  CAS  Google Scholar 

  12. Liu Y, Zheng C, Wang W, et al. Synthesis and characterization of rutile SnO2 nanorods. Advanced Materials, 2001, 13(24): 1883–1887

    Article  CAS  Google Scholar 

  13. Xu C K, Xu G D, Liu Y K, et al. Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor. Scripta Materialia, 2002, 46(11): 789–794

    Article  CAS  Google Scholar 

  14. Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949

    Article  CAS  Google Scholar 

  15. Dai Z R, Pan Z W, Wang Z L. Ultra-long single crystalline nanoribbons of tin oxide. Solid State Communications, 2001, 118(7): 351–354

    Article  CAS  Google Scholar 

  16. Hu J Q, Ma X L, Shang N G, et al. Large-scale rapid oxidation synthesis of SnO2 nanoribbons. The Journal of Physical Chemistry B, 2002, 106(15): 3823–3826

    Article  CAS  Google Scholar 

  17. Maddalena A, Maschio R D, Dire S, et al. Electrical conductivity of tin oxide films prepared by the sol-gel method. Journal of Non-Crystalline Solids, 1990, 121(1–3): 365–369

    Article  CAS  Google Scholar 

  18. Shek C H, Lai J K L, Lin G M. Grain growth in nanocrystalline SnO2 prepared by sol-gel route. Nanostructured Materials, 1999, 11(7): 887–893

    Article  CAS  Google Scholar 

  19. Ghoshtagore R N. Mechanism of CVD thin film SnO2 formation. Journal of the Electrochemical Society, 1978, 125(1): 110–117

    Article  CAS  Google Scholar 

  20. Tarey R D, Raju T A. A method for the deposition of transparent conducting thin films of tin oxide. Thin Solid Films, 1985, 128(3–4): 181–189

    Article  CAS  Google Scholar 

  21. Minami T, Nanto H, Takata S. Highly conducting and transparent SnO2 thin films prepared by RF magnetron sputtering on low-temperature substrates. Japanese Journal of Applied Physics, 1988, 27(1): L287–L289

    Article  CAS  Google Scholar 

  22. Zhu J J, Lu Z H, Aruna S T, et al. Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes. Chemistry of Materials, 2000, 12(9): 2557–2566

    Article  CAS  Google Scholar 

  23. Schlosser V, Wind G. Electrical and optical properties of tin oxide layers prepared by physical vapor deposition. In: Solomon I, Equer B, Helm P, eds. Eighth E.C. Photovoltaic Solar Energy Conference: Proceedings of the International Conference, Held at Florence, Italy, May 9–13, 1988. Dordrecht, the Netherlands: Kluwer Academic Publishers, 1988, 998

    Google Scholar 

  24. Zhu X, Birringer R, Herr U, et al. X-ray diffraction studies of the structure of nanometer-sized crystalline materials. Physical Review B, 1987, 35(17): 9085–9090

    Article  CAS  Google Scholar 

  25. Schaefer H E, Würschum R, Birringer R, et al. Structure of nanometer-sized polycrystalline iron investigated by positron lifetime spectroscopy. Physical Review B, 1988, 38(14): 9545–9554

    Article  CAS  Google Scholar 

  26. Chrisey D B, Hubler G K. Pulsed Laser Deposition of Thin Films. New York: Wiley, 1994, 327

    Google Scholar 

  27. Willmott P R, Huber J R. Pulsed laser vaporization and deposition. Reviews of Modern Physics, 2000, 72(1): 315–328

    Article  CAS  Google Scholar 

  28. Auciello O, Engemann J, eds. Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals, and Devices. The Netherlands: Kluwer Academic Publishers, 1993

    Google Scholar 

  29. Bäuerle D. Laser Processing and Chemistry. New York: Springer, 1996

    Book  Google Scholar 

  30. Chen Z W, Lai J K L, Shek C H, et al. Nucleation and growth of SnO2 nanocrystallites prepared by pulsed laser deposition. Applied Physics A: Materials Science & Processing, 2005, 81(5): 959–962

    Article  CAS  Google Scholar 

  31. von Allmen M, Blatter A. Laser-Beam Interactions with Materials. New York: Springer, 1995

    Book  Google Scholar 

  32. Campbell C T, Parker S C, Starr D E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science, 2002, 298(5594): 811–814

    Article  CAS  Google Scholar 

  33. Merkle K L, Thompson L J, Phillipp F. Collective effects in grain boundary migration. Physical Review Letters, 2002, 88(22): 225501 (4 pages)

    Article  CAS  Google Scholar 

  34. Moldovan D, Yamakov V, Wolf D, et al. Scaling behavior of grain-rotation-induced grain growth. Physical Review Letters, 2002, 89(20): 206101 (4 pages)

    Article  Google Scholar 

  35. Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 1998, 281(5379): 969–971

    Article  CAS  Google Scholar 

  36. Leite E R, Giraldi T R, Pontes F M, et al. Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature. Applied Physics Letters, 2003, 83(8): 1566–1568

    Article  CAS  Google Scholar 

  37. Leite E R, Weber I T, Longo E, et al. A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Advanced Materials, 2000, 12(13): 965–968

    Article  CAS  Google Scholar 

  38. Leite E R, Maciel A P, Weber I T, et al. Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution. Advanced Materials, 2002, 14(12): 905–908

    Article  CAS  Google Scholar 

  39. Musolino V, Dal Corso A, Selloni A. Initial stages of growth of copper on MgO(100): A first principles study. Physical Review Letters, 1999, 83(14): 2761–2764

    Article  CAS  Google Scholar 

  40. Hu M, Noda S, Komiyama H. A new insight into the growth mode of metals on TiO2(110). Surface Science, 2002, 513(3): 530–538

    Article  CAS  Google Scholar 

  41. Bajt S, Stearns D G, Kearney P A. Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers. Journal of Applied Physics, 2001, 90(2): 1017–1025

    Article  CAS  Google Scholar 

  42. Soler J M, Beltran M R, Michaelian K, et al. Metallic bonding and cluster structure. Physical Review B, 2000, 61(8): 5771–5780

    Article  CAS  Google Scholar 

  43. Hu M, Noda S, Tsuji Y, et al. Effect of interfacial interactions on the initial growth of Cu on clean SiO2 and 3-mercaptopropyltrimethoxysilane-modified SiO2 substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002, 20(3): 589–596

    Article  CAS  Google Scholar 

  44. Zuo J M, Li B Q. Nanostructure evolution during cluster growth: Ag on H-terminated Si(111) surfaces. Physical Review Letters, 2002, 88(25): 255502 (4 pages)

    Article  CAS  Google Scholar 

  45. Williams G, Coles G S V. Gas sensing properties of nanocrystalline metal oxide powders produced by a laser evaporation technique. Journal of Materials Chemistry, 1998, 8(7): 1657–1664

    Article  CAS  Google Scholar 

  46. Bruno L, Pijolat C, Lalauze R. Tin dioxide thin-film gas sensor prepared by chemical vapour deposition: Influence of grain size and thickness on the electrical properties. Sensors and Actuators B: Chemical, 1994, 18(1–3): 195–199

    Article  CAS  Google Scholar 

  47. Serventi A M, Dolbec R, El Khakani M A, et al. High-resolution transmission electron microscopy investigation of the nanostructure of undoped and Pt-doped nanocrystalline pulsed laser deposited SnO2 thin films. Journal of Physics and Chemistry of Solids, 2003, 64(11): 2097–2103

    Article  CAS  Google Scholar 

  48. Chen Z W, Lai J K L, Shek C H, et al. Synthesis and structural characterization of rutile SnO2 nanocrystals. Journal of Materials Research, 2003, 18(6): 1289–1292

    Article  CAS  Google Scholar 

  49. Chen Z W, Lai J K L, Shek C H, et al. Multifractal spectra of scanning electron microscope images of SnO2 thin films prepared by pulsed laser deposition. Physics Letters A, 2005, 345(1–3): 218–223

    Article  CAS  Google Scholar 

  50. Chen Z W, Lai J K L, Shek C H. Insights into microstructural evolution from nanocrystalline SnO2 thin films prepared by pulsed laser deposition. Physical Review B, 2004, 70(16): 165314 (7 pages)

    Article  Google Scholar 

  51. Chen Z W, Lai J K L, Shek C H. High-resolution transmission electron microscopy investigation of nanostructures in SnO2 thin films prepared by pulsed laser deposition. Journal of Solid State Chemistry, 2005, 178(3): 892–896

    Article  CAS  Google Scholar 

  52. Chen ZW, Lai J K L, Shek C H. Mystery of porous SnO2 thin film formation by pulsed delivery. Chemical Physics Letters, 2006, 422(1–3): 1–5

    Article  CAS  Google Scholar 

  53. Serventi A M, El Khakani M A, Saint-Jacques R G, et al. Highly textured nanostructure of pulsed laser deposited IrO2 thin films as investigated by transmission electron microscopy. Journal of Materials Research, 2001, 16 (08): 2336–2342

    Article  Google Scholar 

  54. Butty J, Peyghambarian N, Kao Y H, et al. Room temperature optical gain in sol-gel derived CdS quantum dots. Applied Physics Letters, 1996, 69(21): 3224–3226

    Article  CAS  Google Scholar 

  55. Chen Z W, Wang X P, Tan S, et al. Multifractal behavior of crystallization on Au/Ge bilayer films. Physical Review B, 2001, 63(16): 165413 (5 pages)

    Article  Google Scholar 

  56. Huang L J, Liu B X, Ding J R, et al. Multifractal characteristics of magnetic-microsphere aggregates in thin films. Physical Review B, 1989, 40(1): 858–861

    Article  CAS  Google Scholar 

  57. Li H, Ding Z, Wu Z. Multifractal behavior of the distribution of secondary-electron-emission sites on solid surfaces. Physical Review B, 1995, 51(19): 13554–13559

    Article  CAS  Google Scholar 

  58. Li H, Ding Z-J, Wu Z. Multifractal analysis of the spatial distribution of secondary-electron emission sites. Physical Review B, 1996, 53(24): 16631–16636

    Article  CAS  Google Scholar 

  59. Wang B, Wang Y, Wu Z. Multifractal behavior of solid-on-solid growth. Solid State Communications, 1995, 96(2): 69–72

    Article  CAS  Google Scholar 

  60. Ohta S, Honjo H. Growth probability distribution in irregular fractal-like crystal growth of ammonium chloride. Physical Review Letters, 1988, 60(7): 611–614

    Article  CAS  Google Scholar 

  61. Xu C, Tamaki J, Miura N, et al. Grain size effects on gas sensitivity of porous SnO2-based elements. Sensors and Actuators B: Chemical, 1991, 3(2): 147–155

    Article  CAS  Google Scholar 

  62. Baumann T F, Kucheyev S O, Gash A E, et al. Facile synthesis of a crystalline, high-surface-area SnO2 aerogel. Advanced Materials, 2005, 17(12): 1546–1548

    Article  CAS  Google Scholar 

  63. Cheng B, Russell J M, Shi W S, et al. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. Journal of the American Chemical Society, 2004, 126(19): 5972–5973

    Article  CAS  Google Scholar 

  64. Hu J Q, Bando Y, Liu Q L, et al. Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Advanced Functional Materials, 2003, 13(6): 493–496

    Article  CAS  Google Scholar 

  65. McCarthy G, Welton J. X-ray diffraction data for SnO2. An illustration of the new powder data evaluation methods. Journal of Materials Characterization, 1989, 4(03): 156–159

    CAS  Google Scholar 

  66. Traylor J G, Smith H G, Nicklow R M, et al. Wilkinson, lattice dynamics of rutile. Physical Review B, 1971, 3(10): 3457–3472

    Article  Google Scholar 

  67. Peercy P S, Morosin B. Pressure and temperature dependences of the Raman-active phonons in SnO2. Physical Review B, 1973, 7(6): 2779–2786

    Article  CAS  Google Scholar 

  68. Diéguez A, Romano-Rodríguez A, Vilà A, et al. The complete Raman spectrum of nanometric SnO2 particles. Journal of Applied Physics, 2001, 90(3): 1550–1557

    Article  Google Scholar 

  69. Wang G H, Han M. Structure and properties of nanocrystalline materials. Progress in Physics, 1990, 10(3): 248–289

    Google Scholar 

  70. Romanowski W. Equilibrium forms of very small metallic crystals. Surface Science, 1969, 18(2): 373–388

    Article  CAS  Google Scholar 

  71. Jones F H, Dixon R, Foord J S, et al. The surface structure of SnO2(110)(4 1) revealed by scanning tunneling microscopy. Surface Science, 1997, 376(1–3): 367–373

    Article  CAS  Google Scholar 

  72. Pagnier T, Boulova M, Galerie A, et al. In situ coupled Raman and impedance measurements of the reactivity of nanocrystalline SnO2 versus H2S. Journal of Solid State Chemistry, 1999, 143(1): 86–94

    Article  CAS  Google Scholar 

  73. Hama T, Matsubara T. Self-consistent Einstein model and theory of anharmonic surface vibration. II Face-centered cubic lattice. Progress of Theoretical Physics, 1978, 59(5): 1407–1417

    Article  CAS  Google Scholar 

  74. Hayashi S, Yamamoto K. Amorphous-like Raman spectra of semiconductor microcrystals. Superlattices and Microstructures, 1986, 2(6): 581–585

    Article  CAS  Google Scholar 

  75. Dolbec R, El Khakani M A, Serventi A M, et al. Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition. Thin Solid Films, 2002, 419(1–2): 230–236

    Article  CAS  Google Scholar 

  76. Greskovich C, Lay K W. Grain growth in very porous Al2O3 compacts. Journal of the American Ceramic Society, 1972, 55(3): 142–146

    Article  CAS  Google Scholar 

  77. Penn R L, Banfield J F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochimica et Cosmochimica Acta, 1999, 63(10): 1549–1557

    Article  CAS  Google Scholar 

  78. Oviedo J, Gillan M J. Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surface Science, 2000, 463(2): 93–101

    Article  CAS  Google Scholar 

  79. Slater B, Catlow C R A, Gay D H, et al. Study of surface segregation of antimony on SnO2 surfaces by computer simulation techniques. The Journal of Physical Chemistry B, 1999, 103(48): 10644–10650

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Wen Chen or C. M. Lawrence Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, ZW., Shek, CH., Wu, C.M.L. et al. Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties. Front. Mater. Sci. 7, 203–226 (2013). https://doi.org/10.1007/s11706-013-0209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-013-0209-5

Keywords

Navigation