Skip to main content

Advertisement

Log in

Transition metal oxide nanostructures: premeditated fabrication and applications in electronic and photonic devices

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transition metal oxide (TMO) nanomaterials possess both novel nanoeffects and excellent semiconductor properties that make them promising materials for electronics and photonics. Great expectations have been placed on TMO nanomaterials to deal with the global challenges in many fields, especially portable equipment and energy issues. In the last decades, extensive research work concentrated on the synthesis, microstructure, and macro-performance of TMO nanomaterials. A comprehensive understanding of both growth mechanism and underlying relationship between microstructure and physical properties can lead to performance enhancements of TMO nanomaterials in electronics and photonics, which in turn enables the fabrication TMO nanostructures based on anticipated design strategies. At present, TMO nanostructures do not satisfactorily meet the technical criteria for direct practical applications in electronics and photonics. In this paper, recent developments in synthesis, characterization, and prominent applications of TMO nanomaterials are reviewed from a structural perspective, which serves as a stepping stone to develop novel nanostructures with superior performances and provides a necessary guidance for transformation of scientific achievements into practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Reprinted with permission from ref. [16]. Copyright 2016 Elsevier

Figure 3

Reprinted with permission from ref. [17]. Copyright 2006 American Chemical Society

Figure 4

Reprinted with permission from ref. [19]. Copyright 2012 Hindawi

Figure 5

Reprinted with permission from ref. [20]. Copyright 2013 Elsevier

Figure 6

Reprinted with permission from ref. [28]. Copyright 2016 Elsevier

Figure 7

Reprinted with permission from ref. [38]. Copyright 2015 American Chemical Society

Figure 8

Reprinted with permission from ref. [46]. Copyright 2012 Springer

Figure 9

Reprinted with permission from ref. [46]. Copyright 2012 Springer

Figure 10

Reprinted with permission from ref. [63]. Copyright 2013 The American Ceramic Society

Figure 11

Reprinted with permission from ref. [63]. Copyright 2013 The American Ceramic Society

Figure 12

Reprinted with permission from ref. [72]. Copyright 2012 Wiley-VCH

Figure 13

Reprinted with permission from ref. [74]. Copyright 2010 Wiley-VCH

Figure 14

Reprinted with permission from ref. [86]. Copyright 2015 The Royal Society of Chemistry

Figure 15

Reprinted with permission from ref. [89]. Copyright 2011 American Chemical Society

Figure 16

Reprinted with permission from ref. [92]. Copyright 2012 American Chemical Society

Figure 17

Reprinted with permission from ref. [102]. Copyright 2010 American Chemical Society

Figure 18

Reprinted with permission from ref. [107]. Copyright 2011 Wiley-VCH

Figure 19

Reprinted with permission from ref. [108]. Copyright 2012 The Royal Society of Chemistry

Figure 20

Reprinted with permission from ref. [120]. Copyright 2016 Elsevier

Figure 21
Figure 22

Reprinted with permission from ref. [128]. Copyright 2016 The Royal Society of Chemistry

Figure 23

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental application of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  2. Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4:525–529

    Article  Google Scholar 

  3. Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66–69

    Article  Google Scholar 

  4. Afkhami A, Hashemi P, Bagheri H, Salimian J, Ahmadi A, Madrakian T (2017) Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite. Biosens Bioelectron 93:124–131

    Article  Google Scholar 

  5. Li XM, Tao L, Chen ZF, Fang H, Li XS, Wang XR, Xu JB, Zhu HW (2017) Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl Phys Rev 4:021306/1-31

    Google Scholar 

  6. Khan AH, Ghosh S, Pradhan B, Dalui A, Shrestha LK, Acharya S, Ariga K (2017) Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull Chem Soc Jpn 90:627–648

    Article  Google Scholar 

  7. Oregan B, Grätzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  8. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  Google Scholar 

  9. Rao C, Cheetham A (1996) Giant magnetoresistance in transition metal oxides. Science 272:369–370

    Article  Google Scholar 

  10. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  Google Scholar 

  11. Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749

    Article  Google Scholar 

  12. Varghese J, Whatmore RW, Holmes JD (2013) Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications. J Mater Chem C 1:2618–2638

    Article  Google Scholar 

  13. Han SC, Hu LF, Liang ZQ, Wageh S, Al-Ghamdi AA, Chen YS, Fang XS (2014) One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv Funct Mater 24:5719–5727

    Article  Google Scholar 

  14. Li JC, Shi XY, Shen MW (2014) Hydrothermal synthesis and functionalization of iron oxide nanoparticles for MR imaging applications. Part Part Syst Charact 31:1223–1237

    Article  Google Scholar 

  15. Lee M, Balasingam SK, Jeong HY, Hong WG, Lee HBR, Kim BH, Jun Y (2014) One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci Rep 5:8151/1-9

    Google Scholar 

  16. Feng HL, Li C, Li T, Diao FY, Xin T, Liu B, Wang YQ (2017) Three-dimensional hierarchical SnO2 dodecahedral nanocrystals with enhanced humidity sensing properties. Sen Actuators B Chem 243:704–714

    Article  Google Scholar 

  17. Siegfried MJ, Choi KS (2006) Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of pre-grown crystals. J Am Chem Soc 128:10356–10357

    Article  Google Scholar 

  18. Siegfried MJ, Choi KS (2008) Elucidation of an overpotential-limited branching phenomenon observed during the electrocrystallization of cuprous oxide. Angew Chem Int Ed 47:368–372

    Article  Google Scholar 

  19. Du QT, Tan JS, Wang QT, Li CY, Liu XH, Cai RS, Ding YH, Wang YQ (2012) Electrochemical deposition and formation mechanism of single-crystalline Cu2O octahedra on aluminum. J Anal Methods Chem 2012:406162/1-8

    Article  Google Scholar 

  20. Diao FY, Du QT, Li CY, Shang L, Wang YQ (2013) Facile synthesis of cuprous oxide nanooctahedra using electrodeless deposition. Chem Phys Lett 587:45–49

    Article  Google Scholar 

  21. Rackauskas S, Jiang H, Wagner JB, Shandakov SD, Hansen TW, Kauppinen EI, Nasibulin AG (2014) In situ study of noncatalytic metal oxide nanowire growth. Nano Lett 14:5810–5813

    Article  Google Scholar 

  22. Close T, Tulsyan G, Diaz CA, Weinstein SJ, Richter C (2015) Reversible oxygen scavenging at room temperature using electrochemically reduced titanium oxide nanotubes. Nat Nanotechnol 10:418–422

    Article  Google Scholar 

  23. Huang S, Guo CF, Zhang X, Pan W, Luo X, Zhao CS, Gong JH, Li XY, Ren ZF, Wu H (2015) Buckled tin oxide nanobelt webs as highly stretchable and transparent photosensors. Small 11:5712–5719

    Article  Google Scholar 

  24. Lee JH, Katoch A, Choi SW, Kim JH, Kim HW, Kim SS (2015) Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p–n heterojunctions by loading reduced graphene oxide nanosheets. ACS Appl Mater Interfaces 7:3101–3109

    Article  Google Scholar 

  25. Wagner RS, Ellis WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4:89–90

    Article  Google Scholar 

  26. Chang WC, Kuo CH, Lee PJ, Chueh YL, Lin SJ (2012) Synthesis of single crystal Sn-doped In2O3 nanowires: size-dependent conductive characteristics. Phys Chem Chem Phys 14:13041–13045

    Article  Google Scholar 

  27. Zhuge FW, Yanagida T, Nagashima K, Yoshida H, Kanai M, Xu B, Klamchuen A, Meng G, He Y, Rahong S, Li XM, Suzuki M, Kai S, Takeda S, Kawai T (2012) Fundamental strategy for creating VLS grown TiO2 single crystalline nanowires. J Phys Chem C 116:24367–24372

    Article  Google Scholar 

  28. Lee SY, Choi KH, Kang HC (2016) Growth mechanism of In-doped β-Ga2O3 nanowires deposited by radio frequency powder. Mater Lett 176:213–218

    Article  Google Scholar 

  29. Tang CC, Fan SS, Marclamy D (2001) Silica-assisted catalytic growth of oxide and nitride nanowires. Chem Phys Lett 333:12–15

    Article  Google Scholar 

  30. Marcu A, Grigoriu C, Lungu CP, Yanagida T, Kawai T (2012) Ablation particles parameters influences on VLS oxide nanowire growing. Physica E 44:1071–1073

    Article  Google Scholar 

  31. Nam SH, Boo JH (2012) Rutile structured SnO2 nanowires synthesized with metal catalyst by thermal evaporation method. J Nanosci Nanotechnol 12:1559–1562

    Article  Google Scholar 

  32. Wang B, Zheng ZQ, Wu HY, Zhu LF (2014) Field emission properties and growth mechanism of In2O3 nanostructures. Nanoscale Res Lett 9:111/1-8

    Google Scholar 

  33. Meng G, Yanagida T, Yoshida H, Nagashima K, Kanai M, Zhuge FW, He Y, Klamchuen A, Rahong S, Fang XD, Takeda S, Kawai T (2014) A flux induced crystal phase transition in the vapor–liquid–solid growth of indium-tin oxide nanowires. Nanoscale 6:7033–7038

    Article  Google Scholar 

  34. Hulteen JC, Martin CR (1997) A general template-based method for the preparation of nanomaterials. J Mater Chem 7:1075–1081

    Article  Google Scholar 

  35. Yuan LX, Meng SQ, Zhou YY, Yue ZX (2013) Controlled synthesis of anatase TiO2 nanotube and nanowire arrays via AAO template-based hydrolysis. J Mater Chem A 1:2552–2557

    Article  Google Scholar 

  36. Kolmakov A, Zhang Y, Cheng G, Moskovits M (2003) Detection of CO and O2 using tin oxide nanowire sensors. Adv Mater 15:997–1000

    Article  Google Scholar 

  37. Lakshmi BB, Patrissi CJ, Martin CR (1997) Sol–gel template synthesis of semiconductor oxide micro- and nanostructures. Chem Mater 9:2544–2550

    Article  Google Scholar 

  38. Xu Y, Zhou M, Wen LY, Wang CL, Zhao HP, Mi Y, Liang LY, Fu Q, Wu MH, Lei Y (2015) Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chem Mater 27:4274–4280

    Article  Google Scholar 

  39. Huang CM, Chen LH, Xu G, Miao L (2012) Sol–gel template synthesis and characterization of VO2 nanotube arrays. J Sol-Gel Sci Technol 63:103–107

    Article  Google Scholar 

  40. Chen JY, Wang Y, Deng Y (2013) Highly ordered CoFe2O4 nanowires array prepared via a modified sol–gel templated approach and its optical and magnetic properties. J Alloy Compd 552:65–69

    Article  Google Scholar 

  41. Pirouzfar A, Ebrahimi SAS (2014) Optimization of sol–gel synthesis of CoFe2O4 nanowires using template assisted vacuum suction method. J Magn Magn Mater 370:1–5

    Article  Google Scholar 

  42. Qu XF, Xie DD, Gao L, Cao LX, Du FL (2015) Synthesis and characterization of TiO2/WO3 composite nanotubes for photocatalytic applications. J Mater Sci 1:21–27. https://doi.org/10.1007/s10853-014-8441-7

    Article  Google Scholar 

  43. Yuan L, Wang YQ, Mema R, Zhou GW (2011) Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater 59:2491–2500

    Article  Google Scholar 

  44. Yuan L, Wang C, Cai RS, Wang YQ, Zhou GW (2013) Spontaneous ZnO nanowire formation during oxidation of Cu-Zn alloy. J Appl Phys 114:023512/1-8

    Google Scholar 

  45. Yuan L, Wang YQ, Cai RS, Jiang Q, Wang JB, Li BQ, Sharma A, Zhou GW (2012) The origin of hematite nanowire growth during the thermal oxidation of iron. Mater Sci Eng B 177:327–336

    Article  Google Scholar 

  46. Cai RS, Li T, Wang YQ, Wang C, Yuan L, Zhou GW (2012) Formation of modulated structures in single-crystalline hexagonal α-Fe2O3 nanowires. J Nanopart Res 14:1073/1-11

    Article  Google Scholar 

  47. Kment S, Hubicka Z, Krysa J, Sekora D, Zlamal M, Olejnicek J, Cada M, Ksirova P, Remes Z, Schmuki P, Schubert E, Zboril R (2015) On the improvement of PEC activity of hematite thin films deposited by high-power pulsed magnetron sputtering method. Appl Catal B Environ 165:344–350

    Article  Google Scholar 

  48. Barnabé A, Thimont Y, Lalanne M, Presmanes L, Tailhades P (2015) P-type conducting transparent characteristics of delafossite Mg-doped CuCrO2 thin films prepared by RF-sputtering. J Mater Chem C 3:6012–6024

    Article  Google Scholar 

  49. Dixon SC, Scanlon DO, Carmalt CJ, Parkin IP (2016) N-type doped transparent conducting binary oxides: an overview. J Mater Chem C 4:6946–6961

    Article  Google Scholar 

  50. Chang J, Park YS, Lee JW, Kim SK (2008) Layer-by-layer growth and growth-mode transition of SrRuO3 thin films on atomically flat single-terminated SrTiO3 (111) surfaces. J Cryst Growth 311:3771–3774

    Article  Google Scholar 

  51. Van HA, Pinxteren HM, Lohmeier M, Vlieg E, Thornton JM (1992) Surfactant-induced layer-by-layer growth of Ag on Ag (111). Phys Rev Lett 68:3335–3338

    Article  Google Scholar 

  52. Wei XH, Zhu J, Li YR (2011) Anisotropic lattice strain relaxation of MgO/SrTiO3 (001) in a textured island growth mode. Vacuum 85:999–1003

    Article  Google Scholar 

  53. Aït-Mansour K, Dentel D, Kubler L, Diani M, Bischoff JL, Galliano A (2005) Ge epitaxial island growth on a graphitized C-rich 4H-SiC (0001) surface. J Cryst Growth 275:e2275–e2280

    Article  Google Scholar 

  54. Liu D, Liu W (2011) Growth and characterization of epitaxial (La2/3Sr1/3) MnO3 films by pulsed laser deposition. Ceram Int 37:3531–3534

    Article  Google Scholar 

  55. Ding YH, Cai RS, Du QT, Wang YQ, Chen YZ, Sun JR (2011) Microstructure evolution of Bi0.4Ca0.6MnO3 epitaxial films with different thickness. J Cryst Growth 317:115–118

    Article  Google Scholar 

  56. Snyder CW, Barlett D, Orr BG, Bhattacharya PK, Singh J (1991) The molecular beam epitaxy growth of InGaAs on GaAs (100) studied by in situ scanning tunneling microscopy and reflection high-energy electron diffraction. J Vac Sci Technol B 9:2189–2193

    Article  Google Scholar 

  57. LeGoues FK, Copel M, Tromp RM (1990) Microstructure and strain relief of Ge films grown layer by layer on Si (001). Phys Rev B 42:11690–11700

    Article  Google Scholar 

  58. Asai M, Ueba H, Tatsuyama C (1985) Heteroepitaxial growth of Ge films on the Si (100)-2 × 1 surface. J Appl Phys 58:2577–2583

    Article  Google Scholar 

  59. Beck MJ, van de Walle A, Asta M (2004) Surface energetics and structure of the Ge wetting layer on Si(100). Phys Rev B 70:205337/1-7

    Article  Google Scholar 

  60. Liu EZ, Wang CY (2006) Energetics of the growth mode transition in InAs/GaAs (001) small quantum dot formation: a first-principles study. Surf Sci 600:2007–2010

    Article  Google Scholar 

  61. Matthews JW, Mader S, Light TB (1970) Accommodation of misfit across the interface between crystals of semiconducting elements or compounds. J Appl Phys 41:3800–3804

    Article  Google Scholar 

  62. Matthews JW, Blakeslee AE (1974) Defects in epitaxial multilayers: I. Misfit dislocations. J Cryst Growth 27:118–125

    Google Scholar 

  63. Cai RS, Wang YQ, Liu XH, Gao WW, Chen YZ, Sun JR, Wang YG (2013) Origin of different growth modes for manganite epitaxial films. J Am Ceram Soc 96:1660–1665

    Article  Google Scholar 

  64. Jo MH, Mathur ND, Todd NK, Blamire MG (2000) Very large magnetoresistance and coherent switching in half-metallic manganite tunnel junctions. Phys Rev B 61:R14905–R14908

    Article  Google Scholar 

  65. Rao RA, Lavric D, Nath TK, Eom CB, Wu L, Tsui F (1999) Effects of film thickness and lattice mismatch on strain states and magnetic properties of La0.8Ca0.2MnO3 thin films. J Appl Phys 85:4794–4796

    Article  Google Scholar 

  66. Devan RS, Patil RA, Lin JH, Ma YR (2012) One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Adv Funct Mater 22:3326–3370

    Article  Google Scholar 

  67. Osada M, Sasaki T (2012) Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv Mater 24:210–228

    Article  Google Scholar 

  68. Tans SJ, Verschueren RM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  Google Scholar 

  69. Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A, Smalley RE (1997) Single-electron transport in ropes of carbon nanotubes. Science 275:1922–1925

    Article  Google Scholar 

  70. Fuhrer MS, Nygard J, Shih L, Forero M, Yoon Y, Mazzoni MSC, Choi HJ, Ihm J, Louie SG, Zettl A, McEuen PL (2000) Crossed nanotube junctions. Science 288:494–497

    Article  Google Scholar 

  71. Zhai TY, Fang XS, Liao MY, Xu XJ, Zeng HB, Yoshio B, Golberg DA (2009) Comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 9:6504–6529

    Article  Google Scholar 

  72. Hu LF, Yan J, Liao MY, Xiang HJ, Gong XG, Zhang LD, Fang XS (2012) An optimized ultraviolet-a light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Adv Mater 24:2305–2309

    Article  Google Scholar 

  73. Tsai TY, Chang SJ, Hsueh TJ, Hsueh HT, Weng WY, Hsu CL, Da BT (2011) P-Cu2O-shell/n-TiO2-nanowire-core heterostructure photodiodes. Nanoscale Res Lett 6:575/1-7

    Google Scholar 

  74. Li L, Lee PS, Yan CY, Zhai YT, Fang XS, Liao MY, Koide Y, Bando Y, Golberg D (2010) Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts. Adv Mater 22:5145–5149

    Article  Google Scholar 

  75. Mao YB, Park TJ, Wong SS (2005) Synthesis of classes of ternary metal oxide nanostructures. Chem Commun 41:5721–5735

    Article  Google Scholar 

  76. Park NG (2015) Perovskite solar cells: an emerging photovoltaic technology. Mater Today 18:65–72

    Article  Google Scholar 

  77. Yu Q, Meng XG, Wang T, Li P, Liu LQ, Chang K, Liu GG, Ye JH (2015) A highly durable p-LaFeO3/n-Fe2O3 photocell for effective water splitting under visible light. Chem Commun 51:3630–3633

    Article  Google Scholar 

  78. Gopi CVVM, Venkata-Haritha M, Lee YS, Kim HJ (2016) ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells. J Mater Chem A 4:8161–8171

    Article  Google Scholar 

  79. Qiu M, Zhu DQ, Bao XC, Wang JY, Wang XF, Yang RQ (2016) WO3 with surface oxygen vacancies as an anode buffer layer for high performance polymer solar cells. J Mater Chem A 4:894–900

    Article  Google Scholar 

  80. Xie KY, Guo M, Huang HT (2015) Photonic crystals for sensitized solar cells: fabrication, properties, and applications. J Mater Chem C 3:10665–10686

    Article  Google Scholar 

  81. Zhang ST, Foldyna M, Roussel H, Consonni V, Pernot E, Schmidt-Mende L, Rapenne L, Jiménez C, Deschanvres JL, Munõz-Rojas D, Bellet D (2017) Tuning the properties of F:SnO2 (FTO) nanocomposites with S:TiO2 nanoparticles-promising hazy transparent electrodes for photovoltaics applications. J Mater Chem C 5:91–102

    Article  Google Scholar 

  82. Fisher AC, Peter LM, Ponomarev EA, Walker AB, Wijayantha KGU (2000) Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 104:949–958

    Article  Google Scholar 

  83. Law M, Greene LE, Johnson JC, Saykally R, Yang PD (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459

    Article  Google Scholar 

  84. Feng XJ, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA (2008) Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett 8:3781–3786

    Article  Google Scholar 

  85. Chen CY, Wang MK, Li JY, Pootrakulchote N, Alibabaei L, Ngoc-le C, Decoppet JD, Tsai JH, Grätzel C, Wu CG, Zakeeruddin SM, Grätzel M (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3:3103–3109

    Article  Google Scholar 

  86. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 15:15894–15897

    Article  Google Scholar 

  87. Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–245

    Article  Google Scholar 

  88. Wang ZL, Zhu G, Yang Y, Wang SH, Pan CF (2012) Progress in nanogenerators for portable electronics. Mater Today 15:532–543

    Article  Google Scholar 

  89. Hu Y, Zhang Y, Xu C, Lin L, Snyder RL, Wang ZL (2011) Self-powered system with wireless data transmission. Nano Lett 11:2572–2577

    Article  Google Scholar 

  90. Xu C, Wang XD, Wang ZL (2009) Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J Am Chem Soc 131:5866–5872

    Article  Google Scholar 

  91. Yang Y, Zhang HL, Zhu G, Lee S, Lin ZH, Wang ZL (2013) Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 7:785–790

    Article  Google Scholar 

  92. Xue XY, Wang SH, Guo WX, Zhang Y, Wang ZL (2012) Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett 12:5048–5054

    Article  Google Scholar 

  93. Vlad A, Singh N, Rolland J, Melinte S, Ajayan PM, Gohy JF (2014) Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci Rep 4:4315/1-7

    Google Scholar 

  94. Roy P, Srivastava SK (2015) Nanostructured anode materials for lithium ion batteries. J Mater Chem A 3:2454–2484

    Article  Google Scholar 

  95. Keppeler M, Shen N, Nageswaran S, Srinivasan M (2016) Synthesis of α-Fe2O3/carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: a review. J Mater Chem A 4:18223–18239

    Article  Google Scholar 

  96. Yi TF, Mei J, Zhu YR, Fang ZK (2015) Li5Cr7Ti6O25 as a novel negative electrode material for lithium-ion batteries. Chem Commun 51:14050–14053

    Article  Google Scholar 

  97. Song H, Kim YT (2015) A Mo-doped TiNb2O7 anode for lithium-ion batteries with high rate capability due to charge redistribution. Chem Commun 51:9849–9852

    Article  Google Scholar 

  98. Liu H, Wang GX (2014) An investigation of the morphology effect in Fe2O3 anodes for lithium ion batteries. J Mater Chem A 2:9955–9959

    Article  Google Scholar 

  99. Li YG, Tan B, Wu YY (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8:265–270

    Article  Google Scholar 

  100. Li WY, Xu LN, Chen J (2005) Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater 5:851–857

    Article  Google Scholar 

  101. Pasero D, Reeves N, West AR (2005) Co-doped Mn3O4: a possible anode material for lithium batteries. J Power Sources 141:156–158

    Article  Google Scholar 

  102. Wu ZS, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, Zhou GM, Li F, Cheng HM (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    Article  Google Scholar 

  103. Yao WL, Wang JL, Yang J, Du GD (2008) Novel carbon nanofiber-cobalt oxide composites for lithium storage with large capacity and high reversibility. J Power Sources 176:369–372

    Article  Google Scholar 

  104. Yao WL, Yang J, Wang JL, Tao L (2008) A synthesis and electrochemical performance of carbon nanofiber-cobalt oxide composites. Electrochim Acta 53:7326–7330

    Article  Google Scholar 

  105. Wang B, Wu XL, Shu CY, Guo YG, Wang CR (2010) Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J Mater Chem 20:10661–10664

    Article  Google Scholar 

  106. Luo YS, Luo JS, Jiang J, Zhou WW, Yang HP, Qi XY, Zhang H, Fan HJ, Yu DYW, Li CM, Yu T (2012) Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ Sci 5:6559–6566

    Article  Google Scholar 

  107. Zhou WW, Chen CW, Liu JP, Tay YY, Jiang J, Jia XY, Zhang JX, Gong H, Hng HH, Yu T, Fan HJ (2011) Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv Funct Mater 21:2439–2445

    Article  Google Scholar 

  108. Zeng WQ, Zheng FP, Li RZ, Zhan Y, Li YY, Liu JP (2012) Template synthesis of SnO2/α-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity. Nanoscale 4:2760–2765

    Article  Google Scholar 

  109. Mondal S, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem Commun 51:12365–12368

    Article  Google Scholar 

  110. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  Google Scholar 

  111. Zhu SJ, Jia JQ, Wang T, Zhao D, Yang J, Dong F, Shang ZG, Zhang YX (2015) Rational design of octahedron and nanowire CeO2@MnO2 core-shell heterostructures with outstanding rate capability for asymmetric supercapacitors. Chem Commun 51:14840–14843

    Article  Google Scholar 

  112. Spahr ME, Bitterli PS, Nesper R, Haas O, Novak P (1999) Vanadium oxide nanotubes. A new nanostructured redox-active material for the electrochemical insertion of lithium. J Electrochem Soc 146:2780–2783

    Article  Google Scholar 

  113. Jiang H, Zhao T, Ma J, Yan CY, Li CZ (2011) Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. Chem Commun 47:1264–1266

    Article  Google Scholar 

  114. Chou SL, Wang JZ, Chew SY, Liu HK, Dou SX (2008) Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem Commun 10:1724–1727

    Article  Google Scholar 

  115. Dubal DP, Gund GS, Holze R, Jadhav HS, Lokhande CD, Park CJ (2013) Surfactant-assisted morphological tuning of hierarchical CuO thin films electrochemical supercapacitors. Dalton Trans 42:6459–6467

    Article  Google Scholar 

  116. Dubal DP, Gund GS, Holze R, Lokhande CD (2013) Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. J Power Sources 242:687–698

    Article  Google Scholar 

  117. Dubal DP, Gund GS, Holze R, Lokhande CD (2014) Enhancement in supercapacitive properties of CuO thin films due to the surfactant mediated morphological modulation. J Electroanal Chem 712:40–46

    Article  Google Scholar 

  118. Nwanya AC, Obi D, Ozoemena KI, Osuji RU, Awada C, Ruediger A, Maaza M, Rosei F, Ezema FI (2016) Facile synthesis of nanosheet-like CuO film and its potential application as a high-performance pseudocapacitor electrode. Electrochim Acta 198:220–230

    Article  Google Scholar 

  119. Lang XY, Hirata A, Fujita T, Chen MW (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236

    Article  Google Scholar 

  120. Sun P, Yi H, Peng TQ, Jing YT, Wang RJ, Wang HW, Wang XF (2017) Ultrathin MnO2 nanoflakes deposited on carbon nanotube networks for symmetrical supercapacitors with enhanced performance. J Power Sources 341:27–35

    Article  Google Scholar 

  121. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  122. Carey JH, Lawrence J, Tosine HM (1976) Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull Environ Contam Toxicol 16:697–701

    Article  Google Scholar 

  123. Cheng S, Tsai SJ, Lee YF (1995) Photocatalytic decomposition of phenol over titanium oxide of various structures. Catal Today 26:87–96

    Article  Google Scholar 

  124. Kato H, Kudo A (1998) New tantalate photocatalysts for water decomposition into H2 and O2. Chem Phys Lett 295:487–492

    Article  Google Scholar 

  125. Liu G, Yang HG, Pan J, Yang YQ, Lu GQ, Cheng HM (2014) Titanium dioxide crystals with tailored facets. Chem Rev 114:9559–9612

    Article  Google Scholar 

  126. Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124–1125

    Article  Google Scholar 

  127. Wang C, Wang YQ, Liu XH, Diao FY, Yuan L, Zhou GW (2014) Novel hybrid nanocomposites of polyhedral Cu2O nanoparticles-CuO nanowires with enhanced photoactivity. Phys Chem Chem Phys 16:17487–17492

    Article  Google Scholar 

  128. Diao FY, Tian FH, Liang WS, Feng HL, Wang YQ (2016) Mechanistical investigation on the self-enhanced photocatalytic activity of CuO/Cu2O hybrid nanostructures by density functional theory calculations. Phys Chem Chem Phys 18:27967–27975

    Article  Google Scholar 

  129. Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R (2017) An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. Chem Soc Rev 46:3185–3241

    Article  Google Scholar 

  130. Yamada T, Sadakiyo M, Shigematsu A, Kitagawa H (2016) Proton-conductive metal-organic frameworks. Bull Chem Soc Jpn 89:1–10

    Article  Google Scholar 

  131. Berhe TA, Su WN, Chen CH, Pan CJ, Cheng JH, Chen HM, Tsai MC, Chen LY, Dubale AA, Hwang BJ (2016) Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci 9:323–356

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from the National Key Basic Research Development Program of China (Grant No.: 2012CB722705), the Natural Science Foundation for Outstanding Young Scientists in Shandong Province (Grant No.: JQ201002), and High-end Foreign Experts Recruitment Program (Grant Nos.: GDW20163500110, GDW20173500154). Y. Q. Wang would also like to thank the financial support from the Top-notch Innovative Talent Program of Qingdao City (Grant No.: 13-CX-8), the Taishan Scholar Program of Shandong Province, China, Qingdao International Center for Semiconductor Photoelectric Nanomaterials, and Shandong Provincial University Key Laboratory of Optoelectrical Material Physics and Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, F., Wang, Y. Transition metal oxide nanostructures: premeditated fabrication and applications in electronic and photonic devices. J Mater Sci 53, 4334–4359 (2018). https://doi.org/10.1007/s10853-017-1862-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1862-3

Keywords

Navigation