Skip to main content
Log in

Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Cobalt and cobalt oxide nanocrystals were synthesized on Si substrates from aqueous cobalt nitrate [Co(NO3)2·6H2O] powder via chemical vapor deposition method. Scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope observations show different morphologies, such as continuous films, nano-bars, nano-dices, and nano-strings, depending on the synthesis temperature. The crystal structure characterization was conducted using X-ray diffraction methods. Furthermore, the properties of the samples were characterized using Raman spectroscopic analysis and vibrating sample magnetometer. The morphology change was discussed in terms of synthesis environments and chemical interactions between cobalt, oxygen, and silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heli H, Yadegari H. Nanoflakes of the cobaltous oxide, CoO: Synthesis and characterization. Electrochimica Acta, 2010, 55(6): 2139–2148

    Article  CAS  Google Scholar 

  2. Ganguly T A A, Ahmed J, Ganguli A K, et al. Arabian Journal of Chemistry, 2010

  3. Wade T L, Wegrowe J-E. Template synthesis of nanomaterials. The European Physical Journal — Applied Physics, 2005, 29(1): 3–22

    Article  CAS  Google Scholar 

  4. Bréchignac C, Houdy P, Lahmani M, eds. Nanomaterials and Nanochemistry. Berlin: Springer-Verlag, Berlin Heidelberg, 2007

    Google Scholar 

  5. Weller H. Self-organized superlattices of nanoparticles. Angewandte Chemie International Edition in English, 1996, 35(10): 1079–1081

    Article  CAS  Google Scholar 

  6. Rodríguez J A, Fernández-García M, eds. Part Introduction, in Synthesis, Properties, and Applications of Oxide Nanomaterials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006

    Google Scholar 

  7. Shen G X, Chen Y C, Lin C J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method. Thin Solid Films, 2005, 489(1-2): 130–136

    Article  CAS  Google Scholar 

  8. Heli H, Jabbari A, Majdi S, et al. Electrooxidation and determination of some non-steroidal anti-inflammatory drugs on nanoparticles of Ni-curcumin-complex-modified electrode. Journal of Solid State Electrochemistry, 2009, 13(12): 1951–1958

    Article  CAS  Google Scholar 

  9. Heli H, Jabbari A, Zarghan M, et al. Copper nanoparticles-carbon microparticles nanocomposite for electrooxidation and sensitive detection of sotalol. Sensors and Actuators B: Chemical, 2009, 140(1): 245–251

    Article  Google Scholar 

  10. Wronski Z S. Materials for rechargeable batteries and clean hydrogen energy sources. International Materials Reviews, 2001, 46(1): 1–49

    Article  CAS  Google Scholar 

  11. Hosono E, Fujihara S, Honma I, et al. Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. Journal of Power Sources, 2006, 158(1): 779–783

    Article  CAS  Google Scholar 

  12. Barrera E, González I, Viveros T. A new cobalt oxide electrodeposit bath for solar absorbers. Solar Energy Materials and Solar Cells, 1998, 51(1): 69–82

    Article  CAS  Google Scholar 

  13. Casella I G, Guascito M R. Electrochemical preparation of a composite gold-cobalt electrode and its electrocatalytic activity in alkaline medium. Electrochimica Acta, 1999, 45(7): 1113–1120

    Article  CAS  Google Scholar 

  14. Jyoko Y, Kashiwabara S, Hayashi Y. Preparation of giant magnetoresistance Co/Cu multilayers by electrodeposition. Journal of The Electrochemical Society, 1997, 144(1): L5–L8

    Article  CAS  Google Scholar 

  15. Phase D, Choudhary R J, Ganesan V, et al. Manipulation of magnetic nanostructures through low temperature metal-oxygen chemistry: Co/CoO exchange biased nanodonuts and Co nanotips. Solid State Communications, 2009, 149(7-8): 277–280

    Article  CAS  Google Scholar 

  16. Kadam L D, Pawar S H, Patil P S. Studies on ionic intercalation properties of cobalt oxide thin films prepared by spray pyrolysis technique. Materials Chemistry and Physics, 2001, 68(1–3): 280–282

    Article  CAS  Google Scholar 

  17. Thokale R N, Patil P S, Dongare M B. Double-exposure holographic interferometry technique used for characterization of electrodeposited cobalt oxide thin films. Materials Chemistry and Physics, 2002, 74(2): 143–149

    Article  CAS  Google Scholar 

  18. Trasatti S. Physical electrochemistry of ceramic oxides. Electrochimica Acta, 1991, 36(2): 225–241

    Article  CAS  Google Scholar 

  19. Schumacher L C, Holzhueter I B, Hill I R, et al. Semiconducting and electrocatalytic properties of sputtered cobalt oxide films. Electrochimica Acta, 1990, 35(6): 975–984

    Article  CAS  Google Scholar 

  20. Barbero C, Planes G A, Miras M C. Redox coupled ion exchange in cobalt oxide films. Electrochemistry Communications, 2001, 3(3): 113–116

    Article  CAS  Google Scholar 

  21. Casella I G, Gatta M. Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. Journal of Electroanalytical Chemistry, 2002, 534(1): 31–38

    Article  CAS  Google Scholar 

  22. Casella I G. Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)-tartrate complexes. Journal of Electroanalytical Chemistry, 2002, 520(1–2): 119–125

    Article  CAS  Google Scholar 

  23. Buratti S, Brunetti B, Mannino S. Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes catalytic system. Talanta, 2008, 76(2): 454–457

    Article  CAS  Google Scholar 

  24. Jia W, Guo M, Zheng Z, et al. Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode: Toward H2O2 detection. Journal of Electroanalytical Chemistry, 2009, 625(1): 27–32

    Article  CAS  Google Scholar 

  25. Houshmand M, Jabbari A, Heli H, et al. Electrocatalytic oxidation of aspirin and acetaminophen on a cobalt hydroxide nanoparticles modified glassy carbon electrode. Journal of Solid State Electrochemistry, 2008, 12(9): 1117–1128

    Article  CAS  Google Scholar 

  26. Fan L F, Wu X Q, Guo MD, et al. Cobalt hydroxide film deposited on glassy carbon electrode for electrocatalytic oxidation of hydroquinone. Electrochimica Acta, 2007, 52(11): 3654–3659

    Article  CAS  Google Scholar 

  27. Xu C, Tian Z, Shen P, et al. Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochimica Acta, 2008, 53(5): 2610–2618

    Article  CAS  Google Scholar 

  28. Nkeng P, Koenig J-F, Gautier J L, et al. Enhancement of surface areas of Co3O4 and NiCo2O4 electrocatalysts prepared by spray pyrolysis. Journal of Electroanalytical Chemistry, 1996, 402(1): 81–89

    Article  Google Scholar 

  29. Zhu Y, Li H, Koltypin Y, et al. Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication. Journal of Materials Chemistry, 2002, 12(3): 729–733

    Article  CAS  Google Scholar 

  30. Schumacher L C, Holzhueter I B, Hill I R, et al. Semiconducting and electrocatalytic properties of sputtered cobalt oxide films. Electrochimica Acta, 1990, 35(6): 975–984

    Article  CAS  Google Scholar 

  31. Da Silva L M, Boodts J F C, De Faria L A. Oxygen evolution at RuO2(x)+ Co3O4(1 − x) electrodes from acid solution. Electrochimica Acta, 2001, 46(9): 1369–1375

    Article  Google Scholar 

  32. Jiang S P, Lin Z C, Tseung A C C. Homogeneous and heterogeneous catalytic reactions in cobalt oxide/graphite air electrodes. II. Homogeneous role of Cu(II) ions during oxygen reduction on Co3O4/graphite electrodes. Journal of The Electrochemical Society, 1990, 137(3): 764–769

    Article  CAS  Google Scholar 

  33. Ni Y, Ge X, Zhang Z, et al. A simple reduction-oxidation route to prepare Co3O4 nanocrystals. Materials Research Bulletin, 2001, 36(13–14): 2383–2387

    Article  CAS  Google Scholar 

  34. Švegl F, Orel B, Grabec-Švegl I, et al. Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route. Electrochimica Acta, 2000, 45(25-26): 4359–4371

    Article  Google Scholar 

  35. Casella I G, Guascito M R. Anodic electrodeposition of conducting cobalt oxyhydroxide films on a gold surface. XPS study and electrochemical behaviour in neutral and alkaline solution. Journal of Electroanalytical Chemistry, 1999, 476(1): 54–63

    Article  CAS  Google Scholar 

  36. Schmid G, ed. Clusters and Colloids: From Theory to Applications. Weinheim: VCH, 1994

    Google Scholar 

  37. Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496–498

    Article  CAS  Google Scholar 

  38. Penn R L, Stone A T, Veblen D R. Defects and disorder: Probing the surface chemistry of heterogenite (CoOOH) by dissolution using hydroquinone and iminodiacetic acid. The Journal of Physical Chemistry B, 2001, 105(20): 4690–4697

    Article  CAS  Google Scholar 

  39. Pralong V, Delahaye-Vidal A, Beaudoin B, et al. Electrochemical behavior of cobalt hydroxide used as additive in the nickel hydroxide electrode. Journal of The Electrochemical Society, 2000, 147(4): 1306–1313

    Article  CAS  Google Scholar 

  40. Nemudry A, Rudolf P, Schöllhorn R. Topotactic electrochemical redox reactions of the defect perovskite SrCoO2.5+x . Chemistry of Materials, 1996, 8(9): 2232–2238

    Article  CAS  Google Scholar 

  41. Yin S, Xue W, Ding X-L, et al. Formation, distribution, and structures of oxygen-rich iron and cobalt oxide clusters. International Journal of Mass Spectrometry, 2009, 281(1–2): 72–78

    Article  CAS  Google Scholar 

  42. Torchio R, Meneghini C, Mobilio S, et al. Microstructure and magnetic properties of colloidal cobalt nano-clusters. Journal of Magnetism and Magnetic Materials, 2010, 322(21): 3565–3571

    Article  CAS  Google Scholar 

  43. Pal J, Chauhan P. Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Materials Characterization, 2010, 61(5): 575–579

    Article  CAS  Google Scholar 

  44. Ahmed J, Ahmad T, Ramanujachary K V, et al. Development of a microemulsion-based process for synthesis of cobalt (Co) and cobalt oxide (Co3O4) nanoparticles from submicrometer rods of cobalt oxalate. Journal of Colloid and Interface Science, 2008, 321(2): 434–441

    Article  CAS  Google Scholar 

  45. Luo Z, Fang Y, Zhou X, et al. Synthesis of highly ordered Iron/Cobalt nanowire arrays in AAO templates and their structural properties. Materials Chemistry and Physics, 2008, 107(1): 91–95

    Article  CAS  Google Scholar 

  46. Kandalkar S G, Gunjakar J L, Lokhande C D, et al. Synthesis of cobalt oxide interconnected flacks and nano-worms structures using low temperature chemical bath deposition. Journal of Alloys and Compounds, 2009, 478(1–2): 594–598

    Article  CAS  Google Scholar 

  47. Vickers D, Archer L A, Floyd-Smith T. Synthesis and characterization of cubic cobalt oxide nanocomposite fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348(1–3): 39–44

    Article  CAS  Google Scholar 

  48. Xu R, Wang J W, Li Q Y, et al. Porous cobalt oxide (Co3O4) nanorods: Facile syntheses, optical property and application in lithium-ion batteries. Journal of Solid State Chemistry, 2009, 182(11): 3177–3182

    Article  CAS  Google Scholar 

  49. Lou X D, Han J, Chu W F, et al. Synthesis and photocatalytic property of Co3O4 nanorods. Materials Science and Engineering B, 2007, 137(1–3): 268–271

    Article  CAS  Google Scholar 

  50. Duan X, Lieber C M. General synthesis of compound semiconductor nanowires. Advanced Materials, 2000, 12(4): 298–302

    Article  CAS  Google Scholar 

  51. Dai H, Wong EW, Lu Y Z, et al. Synthesis and characterization of carbide nanorods. Nature, 1995, 375(6534): 769–771

    Article  CAS  Google Scholar 

  52. Li F J, Zhang S, Kong J H, et al. Study of silicon dioxide nanowires grown via rapid thermal annealing of sputtered amorphous carbon films doped with Si. Nanoscience and Nanotechnology Letters, 2011, 3(2): 240–245

    CAS  Google Scholar 

  53. Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters, 1964, 4(5): 89–90

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koji, A., Iqbal, J., Yu, RH. et al. Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals. Front. Mater. Sci. 5, 311–321 (2011). https://doi.org/10.1007/s11706-011-0143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-011-0143-3

Keywords

Navigation