Skip to main content
Log in

Electrocatalytic oxidation of aspirin and acetaminophen on a cobalt hydroxide nanoparticles modified glassy carbon electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrocatalytic oxidation of aspirin and acetaminophen on nanoparticles of cobalt hydroxide electrodeposited on the surface of a glassy carbon electrode in alkaline solution was investigated. The process of oxidation and the kinetics have been investigated using cyclic voltammetry, chronoamperometry, and steady-state polarization measurements. Voltammetric studies have indicated that in the presence of drugs, the anodic peak current of low valence cobalt species increases, followed by a decrease in the corresponding cathodic current. This indicates that drugs are oxidized on the redox mediator which is immobilized on the electrode surface via an electrocatalytic mechanism. With the use of Laviron’s equation, the values of anodic and cathodic electron-transfer coefficients and charge-transfer rate constant for the immobilized redox species were determined as α s,a = 0.72, α s,c = 0.30, and k s = 0.22 s−1. The rate constant, the electron transfer coefficient, and the diffusion coefficient involved in the electrocatalytic oxidation of drugs were reported. It was shown that by using the modified electrode, aspirin and acetaminophen can be determined by amperometric technique with detection limits of 1.88 × 10−6 and 1.83 × 10−6 M, respectively. By analyzing the content of acetaminophen and aspirin in bulk forms using chronoamperometric and amperometric techniques, the analytical utility of the modified electrode was achieved. The method was also proven to be valid for analyzing these drugs in urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vane JR, Botting RM (1992) Aspirin and other salicylates. Chapman & Hall, London

    Google Scholar 

  2. Awtry EH, Loscalzo J (2000) Circulation 101:1206

    CAS  Google Scholar 

  3. Boopathi M, Won MS, Shim YB (2004) Anal Chim Acta 512:191

    Article  CAS  Google Scholar 

  4. De Carvalho RM, Freire RS, Rath S, Kubota LT (2004) J Pharm Biomed Anal 34:871

    Article  Google Scholar 

  5. Wade A, Martindale (1979) Tha extra pharmacopia, 27th edn. The Pharmaceutical Press, London

    Google Scholar 

  6. Clayton BD, Stock YN (2001) Basic pharmacology for nurses. Mosby Inc., Harcourt Health Sciences Company, St. Louis

    Google Scholar 

  7. Ruiz Medina A, Fernandez de Cordoba L, Molina Diaz A (1999) Fresenius J Anal Chem 365:619

    Article  CAS  Google Scholar 

  8. Vilchez JL, Blanc R, Avidad R, Navalon A (1995) J Pharm Biomed Anal 13:1119

    Article  CAS  Google Scholar 

  9. Erk N, Ozkan Y, Banoglu E, Ozkan SA, Senturk Z (2001) J Pharm Biomed Anal 24:469

    Article  CAS  Google Scholar 

  10. Nogowska M, Muszalska I, Zajac M (1999) Chem Anal 44:1041

    CAS  Google Scholar 

  11. Rockville MD (1990) Unied States Pharmacopeial XXII. US Pharmacopeial Convention, p 113

  12. Speed DJ, Dickson SJ, Cairns ER, Kim ND (2001) J Anal Toxicol 25:198

    CAS  Google Scholar 

  13. Junior Neto GO LR, Fernandez JR, Kubata LT (2000) Talanta 51:547

    Article  Google Scholar 

  14. Logman MJ, Budygin EA, Gainetdinov RR, Wightman RM (2000) J Neurosci Method 95:95

    Article  CAS  Google Scholar 

  15. Majdi S, Jabbari A, Heli H (2007) J Solid State Electrochem 11:601

    Article  CAS  Google Scholar 

  16. Majdi S, Jabbari A, Heli H, Moosavi-Movahedi AA (2007) Electrochim Acta 52:4622

    Article  CAS  Google Scholar 

  17. Hajjizadeh M, Jabbari A, Heli H, Moosavi-Movahedi AA, Haghgoo S (2007) Electrochim Acta 53:1766

  18. Heli H, Moosavi-Movahedi AA, Jabbari A, Ahmad F (2007) J Solid State Electrochem 11:593

    Article  CAS  Google Scholar 

  19. Jortner J, Rao CNR (2002) Pure Appl Chem 74:1491

    Article  CAS  Google Scholar 

  20. Petrii OA, Tsirlina GA (2001) Russ Chem Rev 70:285

    Article  CAS  Google Scholar 

  21. Silva GC, Fugivara CS, Tremiliosi Filho G, Sumodjo PTA, Benedetti AV (2002) Electrochim Acta 47:1875

    Article  CAS  Google Scholar 

  22. Barbero C, Planes GA, Miras MC (2001) Electrochem Commun 3:113

    Article  CAS  Google Scholar 

  23. Nkeng P, Koening JF, Gautier JL, Chartier P, Poillerat G (1996) J Electrochem Soc 402:81

    Google Scholar 

  24. Zhu Y, Li H, Koltypin Y, Gedanken A (2002) J Mater Chem 12:729

    Article  CAS  Google Scholar 

  25. Schumacher LC, Holzhueter IB, Hill IR, Dignam KJ (1990) Electrochim Acta 35:975

    Article  CAS  Google Scholar 

  26. Nakaoka K, Nakayama M, Ogura K (2002) J Electrochem Soc 149C:159

    Article  Google Scholar 

  27. Jafarian M, Mahjani MG, Heli H, Gobal F, Khajehsharifi H, Hamedi MH (2003) Electrochim Acta 48:3423

    Article  CAS  Google Scholar 

  28. Casella IG (2002) J Electroanal Chem 520:119

    Article  CAS  Google Scholar 

  29. Heli H, Sattarahmady N, Jabbari A, Moosavi-Movahedi AA, Hakimelahi GH, Tsai F-Y (2007) J Electroanal Chem 610:67

    Google Scholar 

  30. Bruckenstein S, Shay M (1985) J Electroanal Chem 188:131

    Article  CAS  Google Scholar 

  31. Laviron E (1979) J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  32. Luo H, Shi Z, Li N, Gu Z, Zhuang Q (2001) Anal Chem 73:915

    Article  CAS  Google Scholar 

  33. Bard AJ, Faulkner LR (2001) Electrochemical methods, chapter 12. Wiley, New York

    Google Scholar 

  34. Sandulescu R, Mirel S, Oprean R (2000) J Pharm Biomed Anal 23:77

    Article  CAS  Google Scholar 

  35. Quintino MSM, Araki K, Toma HE, Angnes L (2002) Electroanalysis 14:1629

    Article  CAS  Google Scholar 

  36. Wang CY, Hu XY (2005) Talanta 67:625

    Article  CAS  Google Scholar 

  37. Miller JC, Miller JN (1994) Statistics for analytical chemistry, 4th edn. Ellis-Harwood, New York, p 115

    Google Scholar 

  38. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York, p 163

    Google Scholar 

  39. Wang C, Li C, Wang F, Wang C (2006) Microchim Acta 155:365

    Article  CAS  Google Scholar 

  40. Harrison JH, Khan ZA (1970) J Electroanal Chem 28:131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Research Councils of K. N. Toosi University of Technology and University of Tehran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jabbari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houshmand, M., Jabbari, A., Heli, H. et al. Electrocatalytic oxidation of aspirin and acetaminophen on a cobalt hydroxide nanoparticles modified glassy carbon electrode. J Solid State Electrochem 12, 1117–1128 (2008). https://doi.org/10.1007/s10008-007-0454-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0454-6

Keywords

Navigation