Skip to main content
Log in

Fine structure and development of the collar enamel in gars, Lepisosteus oculatus, Actinopterygii

  • Research Article
  • Published:
Frontiers of Materials Science in China Aims and scope Submit manuscript

Abstract

The fine structure of collar enamel and the cells constituting the enamel organ during amelogenesis in Lepisosteus oculatus was observed by light, scanning electron and transmission electron microscopy. In the enamel, slender crystals were arranged perpendicular to the surface and the stripes that were parallel to the surface were observed, suggesting that the enamel in Lepisosteus shares common morphological features with that in sarcopterygian fish and amphibians. Ameloblasts containing developed Golgi apparatus, rough endoplasmic reticulum (rER) and secretory granules were found in the secretory stage. In the maturation stage, a ruffled border was not seen at the distal end of the ameloblasts, while many mitochondria and lysosome-like granules were obvious in the distal cytoplasm. The enamel organ consisted of the outer dental epithelial cells, stratum reticulum cells and ameloblasts, but there was no stratum intermedium. It is likely that the ameloblasts have less absorptive function in comparison with the inner dental epithelial cells facing cap enameloid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prostak K, Seifert P, Skobe Z. The effects of colchicine on the ultrastructure of odontogenic cells in the common skate, Raja erinacae. In: Fearnhead R W, ed. Tooth Enamel V. Yokohama, Japan: Florence, 1989, 188–192

    Google Scholar 

  2. Ishiyama M, Inage T, Shimokawa H. An immunocytochemical study of amelogenin proteins in the developing toothenamel of the gar-pike, Lepisosteus oculatus (Holostei, Actinopterygii). Archives of Histology and Cytology, 1999, 62(2): 191–197

    Article  CAS  Google Scholar 

  3. Reif W-E. Evolution of dermal skeleton and dentition in vertebrates: the odontode regulation theory. Evolutionary Biology, 1982, 15: 287–368

    Google Scholar 

  4. Smith M M. Distribution and variation in enamel structure in the oral teeth of sarcopterygians: its significance for the evolution of a protoprismatic enamel. Historical Biology, 1989, 3: 97–126

    Google Scholar 

  5. Kerr T. Development and structure of some actinopterygian and urodele teeth. Proceedings of the Royal Society of London, Series B, Biological Sciences, 1960, 133: 401–422

    Google Scholar 

  6. Ishiyama M, Inage T, Shimokawa H. Abortive secretion of an enamel matrix in the inner enamel epithelial cells during an enameloid formation in the gar-pike, Lepisosteus oculatus (Holostei, Actinopterygii). Archives of Histology and Cytology, 2001, 64(1): 99–107

    Article  CAS  Google Scholar 

  7. Sasagawa I, Ishiyama M. Fine structural and cytochemical mapping of enamel organ during the enameloid formation stages in gars, Lepisosteus oculatus, Actinopterygii. Archives of Oral Biology, 2005, 50(4): 373–391

    Article  CAS  Google Scholar 

  8. Sasagawa I, Ishiyama M. Fine structural and cytochemical observations on the dental epithelial cells during cap enameloid formation stages in Polypterus senegalus, a bony fish (Actinopterygii). Connective Tissue Research, 2005, 46(1): 33–52

    Article  Google Scholar 

  9. Shellis R P, Miles A E W. Autoradiographic study of the formation of enameloid and dentine matrices in teleost fishes using tritiated amino acids. Proceedings of the Royal Society of London, Series B, Biological Sciences, 1974, 185(1078): 51–72

    Article  Google Scholar 

  10. Sasagawa I, Ishiyama M. The structure and development of the collar enameloid in two teleost fishes, Halichoeres poecilopterus and Pagrus major. Anatomy and Embryology, 1988, 178(6): 499–511

    Article  CAS  Google Scholar 

  11. Isokawa S, Satomura I, Yamaguchi K, et al. Historadiographic observation on the outer dentine in certain osseus fishes. Journal of Nihon University School of Dentistry, 1970, 12: 1–5

    CAS  Google Scholar 

  12. Schmidt W J, Keil A. Polarizing Microscopy of Dental Tissues. Oxford: Pergamon Press, 1971, 584

    Google Scholar 

  13. Ørvig T. Microstructure and growth of the dermal skeleton in fossil actinopterygian fishes: Birgeria and Scanilepis. Zoological Scripta, 1978, 7: 33–56

    Article  Google Scholar 

  14. Smith M M. Microstructure and evolution of enamel amongst osteichthyan fishes and early tetrapods. In: Smith P, Tchernov E, eds. Structure, Function and Evolution of Teeth. Proceedings of the 8th International Symposium on Dental Morphology. London: Freund Publishing House, 1992, 73–101

    Google Scholar 

  15. Reif W-E. Structural convergences between enameloid of actinopterygian teeth and of shark teeth. Scanning Electron Microscopy, 1979, II: 547–554

    Google Scholar 

  16. Peyer B. Comparative Odontology. Chicago: The University of Chicago Press, 1968, 321

    Google Scholar 

  17. Herold R C B. Ultrastructure of odontogenesis in the pike (Esox lucius). Role of dental epithelium and formation of enameloid layer. Journal of Ultrastructure Research, 1974, 48(3): 435–454

    Article  Google Scholar 

  18. Shellis R P, Miles A E W. Observations with the electron microscope on enameloid formation in the common eel (Anguilla anguilla; Teleostei). Proceedings of the Royal Society of London, Series B, Biological Sciences, 1976, 194(1115): 253–269

    Google Scholar 

  19. Shellis R P, Poole D F G. The structure of the dental hard tissues of the coelacanthid fish Latimeria chalumnae Smith. Archives of Oral Biology, 1978, 23(12): 1105–1113

    Article  CAS  Google Scholar 

  20. Smith M M. Enamel in the oral teeth of Latimeria chalumnae (Pisces: Actinistian): A scanning electron microscope study. Journal of Zoology (London), 1978, 185: 355–369

    Google Scholar 

  21. Sasagawa I, Ishiyama M, Kodera H. Fine structure of the pharyngeal teeth in the Coelacanthid fish (Latimeria chalumnae). In: Fearnhead R W, Suga S, eds. Tooth Enamel IV. Amsterdam: Elsevier, 1984, 462–466

    Google Scholar 

  22. Ishiyama M, Teraki Y. Microstructural features of dipnoan tooth enamel. Archives of Oral Biology, 1990, 35(6): 479–482

    Article  CAS  Google Scholar 

  23. Kemp A. Ultrastructure of the developing dentition in the Australian lungfish, Neoceratodus forsteri. In: Smith P, Tchernov E, eds. Structure, Function and Evolution of Teeth. London: Freund Publishing House, 1992, 11–33

    Google Scholar 

  24. Kemp A. Ultrastructure of developing tooth plates in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi). Tissue and Cell, 2003, 35(6): 401–426

    Article  Google Scholar 

  25. Satchell P G, Shuler C F, Diekwisch T G H. True enamel covering in teeth of the Australian lungfish Neoceratodus forsteri. Cell and Tissue Research, 299(1): 27–37

  26. Smith M M. Structure and histogenesis of tooth plates in Sagenodus inaequalis owen considered in relation to the phylogeny of post-devonian dipnoans. Proceedings of the Royal Society of London, Series B, Biological Sciences, 1979, 204(1154): 15–39

    CAS  Google Scholar 

  27. Smith M M, Hobdell M H, Miller W A. The structure of the scales of Latimeria chalumnae. Journal of Zoology (London), 1972, 167: 501–509

    Google Scholar 

  28. Zaki A E, MacRae E K. Fine structure of the secretory and nonsecretory ameloblasts in the frog. 1. Fine structure of the secretory ameloblasts. The American Journal of Anatomy, 1977, 148: 161–194

    Article  CAS  Google Scholar 

  29. Zaki A E, MacRae E K. Fine structure of the secretory and non-secretory ameloblasts in the frog. II. Fine structure of the non-secretory ameloblast. Journal of Morphology, 1978, 158(2): 181–197

    Article  CAS  Google Scholar 

  30. Zaki A E, Weber D F. Microradiography of the mineralization pattern in developing teeth of the frog, Rana pipiens. Archives of Oral Biology, 1979, 24(9): 651–655

    Article  CAS  Google Scholar 

  31. Smith M M, Miles A E W. The ultrastucture of odontogenesis in larval and adult. urodeles; differentiation of the dental epithelial cells. Zeitschrift fur Zellforschung und mikroskopische Anatomie, 1971, 121: 470–498

    Article  CAS  Google Scholar 

  32. Kogaya Y. Histochemical and immunohistochemical characterization of the ganoine layer of Polypterus senegalus. Association for Comparative Biology of Tooth Enamel, 1997, 4: 15–20

    Google Scholar 

  33. Kogaya Y. Immunohistochemical localisation of amelogenin-like proteins and type I collagen and histochemical demonstration of sulphated glycoconjugates in developing enameloid and enamel matrices of the larval urodele (Triturus pyrrhogaster) teeth. Journal of Anatomy, 1999, 195(3): 455–464

    Article  CAS  Google Scholar 

  34. Chibon P. Etude ultrastructurale et autoradiographique des dents chez les amphibians. Relations entre la morphogenese dentaire et l’activite thyroidienne. Bulletin de la Societe Zoologique de France, 1972, 97: 437–448

    Google Scholar 

  35. Roux J P, Chibon P. Etude ultrastructurale de l’amelogenese chez la larve du triton Pleurodeles waltlii. [Amphibien Urodele]. Journal de Biologie Buccale, 1973, 1: 33–44

    CAS  Google Scholar 

  36. Kawasaki K, Fearnhead R W. Comparative histology of tooth enamel and enameloid. In: Suga S, ed. Mechanisms of Tooth Enamel Formation. Tokyo: Quintessence, 1983, 229–238

    Google Scholar 

  37. Bolte M, Clemen G. The enamel of larval and adult teeth of Ambystoma mexicanum shaw (Urodela: ambystomatidae)_a SEM study. Zoologischer Anzeiger, 1992, 228(3–4): 167–173

    Google Scholar 

  38. Wistuba J, Greven H, Clemen G. Development of larval and transformed teeth in Ambystoma mexicanum (Urodela, Amphibia): an ultrastructural study. Tissue and Cell, 2002, 34(1): 14–27

    Article  CAS  Google Scholar 

  39. Davit-Béal T, Allizard F, Sire J-Y. Enameloid/enamel transition through successive tooth replacements in Pleurodeles waltl (Lissamphibia, Caudata). Cell and Tissue Research, 2007, 328(1): 167–183

    Article  Google Scholar 

  40. Takagi J. The fine structure of salamander (Triturus pyrrhogaster) ameloblasts. Nihon University Dental Journal, 1991, 65, 10–18

    Google Scholar 

  41. Delgado S, Davit-Béal T, Allizard F, et al. Tooth development in a scincid lizard, Chalcides viridanus (Squamata), with particular attention to enamel formation. Cell and Tissue Research, 2005, 319(1): 71–89

    Article  Google Scholar 

  42. Sire J-Y. Light and TEM study of nonregenerated and experimentally regenerated scales of Lepisosteus oculatus (holostei) with particular attention to ganoine formation. The Anatomical Record, 1994, 240(2): 189–207

    Article  CAS  Google Scholar 

  43. Sire J-Y. Ganoine formation in the scales of primitive actinopterygian fishes, Lepisosteids and Polypterids. Connective Tissue Research, 1995, 33: 535–544

    Article  Google Scholar 

  44. Kogaya Y. Histochemical and immunohistochemical characterization of the ganoine layer of Polypterus senegalus. Archives of Comparative Biology of Tooth Enamel, 1997, 5: 23–29

    Google Scholar 

  45. Zylberberg L, Sire J-Y, Nanci A. Immunodetection of amelogenin-like proteins in the ganoine of experimentally regenerating scales of calamoichthys calabaricus, a primitive actinoptery gian fish. The Anatomical Record, 1997, 249(1): 86–95

    Article  CAS  Google Scholar 

  46. Sasagawa I, Ishiyama M. Fine Structure and Ca-ATPase activity of the stratum intermedium cells during odontogenesis in gars, Lepisosteus, Actinopterygii. Connective Tissue Research, 2002, 43(2 & 3): 505–508

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Sasagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasagawa, I., Ishiyama, M., Yokosuka, H. et al. Fine structure and development of the collar enamel in gars, Lepisosteus oculatus, Actinopterygii. Front. Mater. Sci. China 2, 134–142 (2008). https://doi.org/10.1007/s11706-008-0023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-008-0023-7

Keywords

Navigation