Skip to main content

Advertisement

Log in

Tooth development in a scincid lizard, Chalcides viridanus (Squamata), with particular attention to enamel formation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Comparative analysis of tooth development in the main vertebrate lineages is needed to determine the various evolutionary routes leading to current dentition in living vertebrates. We have used light, scanning and transmission electron microscopy to study tooth morphology and the main stages of tooth development in the scincid lizard, Chalcides viridanus, viz., from late embryos to 6-year-old specimens of a laboratory-bred colony, and from early initiation stages to complete differentiation and attachment, including resorption and enamel formation. In C. viridanus, all teeth of a jaw have a similar morphology but tooth shape, size and orientation change during ontogeny, with a constant number of tooth positions. Tooth morphology changes from a simple smooth cone in the late embryo to the typical adult aspect of two cusps and several ridges via successive tooth replacement at every position. First-generation teeth are initiated by interaction between the oral epithelium and subjacent mesenchyme. The dental lamina of these teeth directly branches from the basal layer of the oral epithelium. On replacement-tooth initiation, the dental lamina spreads from the enamel organ of the previous tooth. The epithelial cell population, at the dental lamina extremity and near the bone support surface, proliferates and differentiates into the enamel organ, the inner (IDE) and outer dental epithelium being separated by stellate reticulum. IDE differentiates into ameloblasts, which produce enamel matrix components. In the region facing differentiating IDE, mesenchymal cells differentiate into dental papilla and give rise to odontoblasts, which first deposit a layer of predentin matrix. The first elements of the enamel matrix are then synthesised by ameloblasts. Matrix mineralisation starts in the upper region of the tooth (dentin then enamel). Enamel maturation begins once the enamel matrix layer is complete. Concomitantly, dental matrices are deposited towards the base of the dentin cone. Maturation of the enamel matrix progresses from top to base; dentin mineralisation proceeds centripetally from the dentin–enamel junction towards the pulp cavity. Tooth attachment is pleurodont and tooth replacement occurs from the lingual side from which the dentin cone of the functional teeth is resorbed. Resorption starts from a deeper region in adults than in juveniles. Our results lead us to conclude that tooth morphogenesis and differentiation in this lizard are similar to those described for mammalian teeth. However, Tomes’ processes and enamel prisms are absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berkovitz BKB, Sloan P (1979) Attachment tissue of the teeth in Caiman sclerops (Crocodilia). J Zool Lond 187:179–194

    Google Scholar 

  • Cooper JS (1966) Tooth replacement in the slow worm (Anguis fragilis). J Zool Lond 150:235–248

    Google Scholar 

  • Cooper JS, Poole DFG, Lawson R (1970) The dentition of agamid lizards with special reference to tooth replacement. J Zool Lond 162:85–98

    Google Scholar 

  • Delgado S, Davit-Beal T, Sire J-Y (2003) The dentition and tooth replacement pattern in Chalcides (Squamata; Scincidae). J Morphol 256:146–159

    Article  PubMed  Google Scholar 

  • DeMar RE (1972) Evolutionary implications of Zahnreihen. Evolution 26:435–450

    Google Scholar 

  • DeMar RE (1974) On the reality of Zahnreihen and the nature of reality in morphological studies. Evolution 28:328–330

    Google Scholar 

  • Dufaure JP, Hubert J (1961) Table de développement du lézard vivipare: Lacerta (Zootoca) vivipara Jacquin. Arch Anat Microsc 50:309–327

    Google Scholar 

  • Edmund AG (1960) Tooth replacement phenomena in the lower vertebrates. Contrib R Ont Mus Life Sci Div 52:1–190

    Google Scholar 

  • Edmund AG (1962) Sequence and rate of tooth replacement in the Crocodilia. Contrib R Ont Mus Life Sci Div 56:1–42

    Google Scholar 

  • Edmund AG (1969) Dentition. In: Gans C, Bellairs Ad’A, Parsons TS (eds) Biology of reptilia, vol I. Academic Press, London, pp 117–200

    Google Scholar 

  • Goldberg M, Farges J-C, Magloire H (2001) Structure des dents (dentines). In: Piette E, Goldberg M (eds) La dent normale et pathologique. DeBoeck Université, Bruxelles, pp 55–72

    Google Scholar 

  • Grine FE, Vrba ES, Cruickshank ARI (1979) Enamel prisms and diphyodonty: linked apomorphies of Mammalia. S Afr J Sci 75:114–120

    Google Scholar 

  • Harrison HS (1901) The development and succession of teeth in Hatteria punctata. Q J Microsc Sci 44:161–219

    Google Scholar 

  • Huysseune A (2000) Developmental plasticity in the dentition of a heterodont polyphyodont fish species. In: Teaford MF, Smith MM, Ferguson MWS (eds) Development, function and evolution of teeth. Cambridge University Press, Cambridge, pp 231–241

    Google Scholar 

  • Huysseune A, Sire J-Y (1998) Evolution of patterns and processes in teeth and tooth-related tissues in non-mammalian vertebrates. Eur J Oral Sci 106 (Suppl 1):437–481

    PubMed  Google Scholar 

  • Linde A, Goldberg M (1993) Dentinogenesis. Crit Rev Oral Biol Med 4:679–728

    CAS  PubMed  Google Scholar 

  • Nanci A, Goldberg M (2001) Structure des dents (émail). In: Piette E, Goldberg M (eds) La dent normale et pathologique. DeBoeck Université, Bruxelles, pp 39–54

    Google Scholar 

  • Ogawa T (1977) A histological study of the gekko tooth. Shigaku Odontol 64:1377–1388

    CAS  Google Scholar 

  • Osborn JW (1970) New approach to Zahnreihen. Nature 225:343–346

    CAS  PubMed  Google Scholar 

  • Osborn JW (1971) The ontogeny of tooth succession in Lacerta vivipara Jacquin (1787). Proc R Soc Lond [Biol] 179:261–289

    CAS  Google Scholar 

  • Osborn JW (1972) On the biological improbability of Zahnreihen as embryological units. Evolution 26:601–607

    Google Scholar 

  • Osborn JW (1984) From reptile to mammals: evolutionary considerations of the dentition with emphasis on tooth attachment. Symp Zool Soc Lond 52:549–574

    Google Scholar 

  • Osborn JW Crompton AW (1973) The evolution of mammalian from reptilian dentitions. Breviora 399:1–18

    Google Scholar 

  • Poole DFG (1957) The formation and properties of the organic matrix of reptilian tooth enamel. Q J Microsc Sci 98:349–367

    Google Scholar 

  • Poole DFG (1967) Phylogeny of tooth tissues: enameloid and enamel in recent vertebrates, with a note on the history of cementum. In: Miles AEW (ed) Structural and chemical organization of teeth. Academic Press, New York, pp 11–149

    Google Scholar 

  • Prostak K, Skobe Z (1986) Ultrastructure of the dental epithelium during enameloid mineralization in a teleost fish, Cichlasoma cyanoguttatum. Arch Oral Biol 31:73–85

    Article  CAS  PubMed  Google Scholar 

  • Rieppel O (1978) Tooth replacement in Anguinomorph lizards. Zoomorphologie 91:77–90

    Google Scholar 

  • Risnes S (1989) Shark tooth morphogenesis. An SEM and EDX analysis of enameloid and dentin development in various shark species. J Biol Buccale 18:237–248

    Google Scholar 

  • Rocek Z (1980) Intraspecific and ontogenetic variation of the dentition in the green lizard Lacerta viridis (Reptilia, Squamata). Vest Cs Spolec Zool 44:272–278

    Google Scholar 

  • Röse C (1894) Ueber die Zahnentwicklung der Crocodile. Morphol Arbeit 3:195–228

    Google Scholar 

  • Ruch JV (2001) Développement dentaire normal. In: Piette E, Goldberg M (eds) La dent normale et pathologique. DeBoeck Université, Bruxelles, pp 5–17

    Google Scholar 

  • Sander PM (2001) Primless enamel in amniotes: terminology, function and evolution. In: Teaford M, Ferguson MWJ, Smith MM (eds) Development, function and evolution of teeth. Cambridge University Press, New York, pp 92–106

    Google Scholar 

  • Shellis RP (1982) Comparative anatomy of tooth attachment. In: Berkovitz BKB, Moxham BJ, Newman HN (eds) The periodontal ligament in health and disease. Pergamon, Oxford, pp 3–24

    Google Scholar 

  • Sire J-Y, Huysseune A (2003) Formation of skeletal and dental tissues in fish: a comparative and evolutionary approach. Biol Rev 78:219–249

    Article  PubMed  Google Scholar 

  • Sire J-Y, Géraudie G, Meunier FJ, Zylberberg L (1987) On the origin of the ganoine: histological and ultrastructural data on the experimental regeneration of the scales of Calamoichthys calabaricus (Osteichthyes, Brachyopterygii, Polypteridae). Am J Anat 180:391–402

    CAS  PubMed  Google Scholar 

  • Sire J-Y, Davit-Beal T, Delgado S, Van Der Heyden C, Huysseune A (2002) The first generation teeth in non-mammalian lineages: evidence for a conserved ancestral character? Microsc Res Techn 59:408–434

    Article  Google Scholar 

  • Trapani J (2001) Position of developing teeth in teleosts. Copeia 1:35–51

    Google Scholar 

  • Van der Heyden C, Huysseune A (2000) Dynamics of tooth formation and replacement in the zebrafish (Danio rerio) (Teleostei, Cyprinidae). Dev Dyn 219:486–496

    Article  PubMed  Google Scholar 

  • Westergaard B (1986) The pattern of embryonic tooth initiation in reptiles. Mém Mus Natn Hist Nat Paris (Série C) 53:55–63

    Google Scholar 

  • Westergaard B, Ferguson MWJ (1986) Development of the dentition in Alligator mississipiensis. Early embryonic development in the lower jaw. J Zool Lond 210:575–597

    Google Scholar 

  • Woerdeman MW (1919) Beiträge zur Entwicklungsgeschichte von Zähnen und Gebiss der Reptilien. Beitrag I. Die Anlage und Entwicklung des embryonalen Gebisses als Ganzes und seine Beziehung zur Zahnleiste. Arch Mikrosk Anat 92:104–192

    Google Scholar 

  • Yamashita Y, Ichijo T (1983) Comparative studies on the structure of the ameloblasts. In: Suga S (ed) Mechanisms of tooth enamel formation. Quintessence, Tokyo, pp 91–107

    Google Scholar 

  • Zaki AE, Macrae EK (1978) Fine structure of the secretory and nonsecretory ameloblasts in the frog. I. Fine structure of the secretory ameloblasts. Am J Anat 148:161–194

    Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Ann Huysseune (Ghent University) for numerous comments and suggestions on the manuscript. We also thank two referees for their constructive remarks. Prof. Jacques Castanet (Université Pierre et Marie Curie) is acknowledged for the gift of embryos, juveniles and adults of C. viridanus. SEM and TEM was carried out at the “Service de Microscopie électronique-Université Paris 6 et CNRS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Sire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado, S., Davit-Béal, T., Allizard, F. et al. Tooth development in a scincid lizard, Chalcides viridanus (Squamata), with particular attention to enamel formation. Cell Tissue Res 319, 71–89 (2005). https://doi.org/10.1007/s00441-004-0950-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0950-2

Keywords

Navigation