Skip to main content
Log in

Boehmite-supported CuO as a catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

2,5-bis(hydroxymethyl)furan (BHMF) is an important monomer of polyester. Its oxygen-containing rigid ring structure and symmetrical diol functional group establish it as an alternative to petroleum-based monomer with unique advantages for the prodution of the degradable bio-based polyester materials. Herein, we prepared a boehmite-supported copper-oxide catalyst for the selective hydrogenation of 5-hydroxymethylfurfural into BHMF via catalytic transfer hydrogenation (CTH). Further, ethanol successfully replaced conventional high-pressure hydrogen as the hydrogen donor, with up to 96.9% BHMF selectivity achieved under suitable conditions. Through characterization and factor investigations, it was noted that CuO is crucial for high BHMF selectivity. Furthermore, kinetic studies revealed a higher by-product activation energy compared to that of BHMF, which explained the influence of reaction temperature on product distribution. To establish the catalyst structure-activity correlation, a possible mechanism was proposed. The copper-oxide catalyst deactivated following CTH because ethanol reduced the CuO, which consequently decreased the active sites. Finally, calcination of the catalyst in air recovered its activity. These results will have a positive impact on hydrogenation processes in the biomass industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chemical Reviews, 2018, 118(22): 11023–11117

    Article  CAS  PubMed  Google Scholar 

  2. Gerardy R, Debecker D P, Estager J, Luis P, Monbaliu J M. Continuous flow upgrading of selected C2-C6 platform chemicals derived from biomass. Chemical Reviews, 2020, 120(15): 7219–7347

    Article  CAS  PubMed  Google Scholar 

  3. Kucherov F A, Romashov L V, Galkin K I, Ananikov V P. Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8064–8092

    Article  CAS  Google Scholar 

  4. Hu L, Xu J, Zhou S, He S, Tang X, Lin L, Xu J, Zhao Y. Catalytic advances in the production and application of biomass-derived 2,5-dihydroxymethylfuran. ACS Catalysis, 2018, 8(4): 2959–2980

    Article  CAS  Google Scholar 

  5. Gilkey M J, Xu B. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catalysis, 2016, 6(3): 1420–1436

    Article  CAS  Google Scholar 

  6. Rao K T V, Hu Y, Yuan Z, Zhang Y, Xu C C. Green synthesis of heterogeneous copper-alumina catalyst for selective hydrogenation of pure and biomass-derived 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan. Applied Catalysis A: General, 2021, 609:117892

    Article  CAS  Google Scholar 

  7. Arias K S, Carceller J M, Climent M J, Corma A, Iborra S. Chemoenzymatic synthesis of 5-hydroxymethylfurfural (HMF)-derived plasticizers by coupling HMF reduction with enzymatic esterification. ChemSusChem, 2020, 13(7): 1864–1875

    Article  CAS  PubMed  Google Scholar 

  8. Zhao W, Huang Z, Yang L, Liu X, Xie H, Liu Z. Highly efficient syntheses of 2,5-bis(hydroxymethyl)furan and 2,5-dimethylfuran via the hydrogenation of biomass-derived 5-hydroxymethylfurfural over a nickel-cobalt bimetallic catalyst. Applied Surface Science, 2022, 577: 151968

    Article  Google Scholar 

  9. Jing Y, Wang Y, Furukawa S, Xia J, Sun C, Hulsey M J, Wang H, Guo Y, Liu X, Yan N. Towards the circular economy: converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angewandte Chemie International Edition, 2021, 60(10): 5527–5535

    Article  CAS  PubMed  Google Scholar 

  10. Yang P, Xia Q, Liu X, Wang Y. Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-Co/C catalyst. Fuel, 2017, 187: 159–166

    Article  CAS  Google Scholar 

  11. Wang G H, Deng X, Gu D, Chen K, Tuysuz H, Spliethoff B, Bongard H J, Weidenthaler C, Schmidt W, Schuth F. Co3O4 nanoparticles supported on mesoporous carbon for selective transfer hydrogenation of α,β-unsaturated aldehydes. Angewandte Chemie International Edition, 2016, 55(37): 11101–11105

    Article  CAS  PubMed  Google Scholar 

  12. Hu L, Liu S, Song J, Jiang Y, He A, Xu J. Zirconium-containing organic-inorganic nanohybrid as a highly efficient catalyst for the selective synthesis of biomass-derived 2,5-dihydroxymethylfuran in isopropanol. Waste and Biomass Valorization, 2020, 11(7): 3485–3499

    Article  CAS  Google Scholar 

  13. Chen N, Zhu Z, Su T, Liao W, Deng C, Ren W, Zhao Y, Lü H. Catalytic hydrogenolysis of hydroxymethylfurfural to highly selective 2,5-dimethylfuran over FeCoNi/h-BN catalyst. Chemical Engineering Journal, 2020, 381: 122755

    Article  CAS  Google Scholar 

  14. Elsayed I, Jackson M A, Hassan E B. Hydrogen-free catalytic reduction of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan using copper-iron oxides bimetallic nanocatalyst. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1774–1785

    Article  CAS  Google Scholar 

  15. Wang T, Zhang J, Xie W, Tang Y, Guo D, Ni Y. Catalytic transfer hydrogenation of biobased HMF to 2,5-bis(hydroxymethyl)furan over Ru/Co3O4. Catalysts, 2017, 7(3): 92

    Article  CAS  Google Scholar 

  16. Zhang J, Qi Z, Liu Y, Wei J, Tang X, He L, Peng L. Selective hydrogenation of 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over a cheap carbon-nanosheets-supported Zr/Ca bimetallic catalyst. Energy & Fuels, 2020, 34(7): 8432–8439

    Article  CAS  Google Scholar 

  17. Wang H, Liu B, Liu F, Wang Y, Lan X, Wang S, Ali B, Wang T. Transfer hydrogenation of cinnamaldehyde catalyzed by Al2O3 using ethanol as a solvent and hydrogen dono. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8195–8205

    Article  CAS  Google Scholar 

  18. Huang L, Zhu Y, Huo C, Zheng H, Feng G, Zhang C, Li Y. Mechanistic insight into the heterogeneous catalytic transfer hydrogenation over Cu/Al2O3: direct evidence for the assistant role of support. Journal of Molecular Catalysis A: Chemical, 2008, 288(1–2): 109–115

    Article  CAS  Google Scholar 

  19. Kloprogge T J, Duong L V, Wood B J, Frost R L. XPS study of the major minerals in bauxite: gibbsite, bayerite and (pseudo-) boehmite. Journal of Colloid and Interface Science, 2006, 296(2): 572–576

    Article  CAS  PubMed  Google Scholar 

  20. Nazim M, Khan A A P, Asiri A M, Kim J H. Exploring rapid photocatalytic degradation of organic pollutants with porous CuO nanosheets: synthesis, dye removal, and kinetic studies at room temperature. ACS Omega, 2021, 6(4): 2601–2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Majid A, Tunney J, Argue S, Kingston D, Post M, Margeson J, Gardner G J. Characterization of CuO phase in SnO2-CuO prepared by the modified Pechini method. Journal of Sol-Gel Science and Technology, 2010, 53(2): 390–398

    Article  CAS  Google Scholar 

  22. Wang J, Zhang Z, Jin S, Shen X. Efficient conversion of carbohydrates into 5-hydroxylmethylfurfan and 5-ethoxymethylfurfural over sulfonic acid-functionalized mesoporous carbon catalyst. Fuel, 2017, 192: 102–107

    Article  CAS  Google Scholar 

  23. Li S, Dong M, Yang J, Cheng X, Shen X, Liu S, Wang Z Q, Gong X Q, Liu H, Han B. Selective hydrogenation of 5-(hydroxymethyl)furfural to 5-methylfurfural over single atomic metals anchored on Nb2O5. Nature Communications, 2021, 12(1): 584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu Y, Bradshaw J, Zhao Y, Kuester W, Kabotso D. Structure-reactivity relationship for alcohol oxidations via hydride transfer to a carbocationic oxidizing agent. Journal of Physical Organic Chemistry, 2011, 24(12): 1172–1178

    Article  CAS  Google Scholar 

  25. Fachri B A, Abdilla R M, Bovenkamp H H, Rasrendra C B, Heeres H J. Experimental and kinetic modeling studies on the sulfuric acid catalyzed conversion of D-fructose to 5-hydroxymethylfurfural and levulinic acid in water. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3024–3034

    Article  CAS  Google Scholar 

  26. Deng X, Zhao P, Zhou X, Bai L. Excellent sustained-release efficacy of herbicide quinclorac with cationic covalent organic frameworks. Chemical Engineering Journal, 2021, 405: 126979

    Article  CAS  Google Scholar 

  27. He A, Hu L, Zhang Y, Jiang Y, Wang X, Xu J, Wu Z. High-efficiency catalytic transfer hydrogenation of biomass-based 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan over a zirconium-carbon coordination catalyst. ACS Sustainable Chemistry & Engineering, 2021, 9(46): 15557–15570

    Article  CAS  Google Scholar 

  28. Valekar A H, Lee M, Yoon J W, Kwak J, Hong D Y, Oh K R, Cha G Y, Kwon Y U, Jung J, Chang J S, Hwang Y K. Catalytic transfer hydrogenation of furfural to furfuryl alcohol under mild conditions over Zr-MOFs: exploring the role of metal node coordination and modification. ACS Catalysis, 2020, 10(6): 3720–3732

    Article  CAS  Google Scholar 

  29. Vandichel M, Vermoortele F, Cottenie S, De Vos D E, Waroquier M, Van Speybroeck V. Insight in the activity and diastereoselectivity of various Lewis acid catalysts for the citronellal cyclization. Journal of Catalysis, 2013, 305: 118–129

    Article  CAS  Google Scholar 

  30. Vermoortele F, Bueken B, Le Bars G, Van de Voorde B, Vandichel M, Houthoofd K, Vimont A, Daturi M, Waroquier M, Van Speybroeck V, Kirschhock C, De Vos D E. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). Journal of the American Chemical Society, 2013, 135(31): 11465–11468

    Article  CAS  PubMed  Google Scholar 

  31. Mironenko A, Vlachos G. Conjugation-driven “reverse Mars-Van Krevelen”-type radical mechanism for low-temperature C-O bond activation. Journal of the American Chemical Society, 2016, 138(26): 8104–8113

    Article  CAS  PubMed  Google Scholar 

  32. Erb B, Risto E, Wendling T, Goossen L J. Reductive etherification of fatty acids or esters with alcohols using molecular hydrogen. ChemSusChem, 2016, 9(12): 1442–1448

    Article  CAS  PubMed  Google Scholar 

  33. De S, Dutta S, Saha B. One-pot conversions of lignocellulosic and algal biomass into liquid fuels. ChemSusChem, 2012, 5(9): 1826–1833

    Article  CAS  PubMed  Google Scholar 

  34. Hu W, Wan Y, Zhu L, Cheng X, Wan S, Lin J, Wang Y. A strategy for the simultaneous synthesis of methallyl alcohol and diethyl acetal with Sn-β. ChemSusChem, 2017, 10(23): 4715–4724

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 22278121), Scientific Research Fund of Hunan Provincial Education Department (Grant No. 20B364), Hunan Provincial Innovation Foundation for Postgraduate (Grant No. QL20210132), and Science and Technology Planning Project of Hunan Province (Grant Nos. 2021GK5083, 2021GK4049, 2018TP1017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianxiang Liu.

Electronic Supplementary Material

11705_2022_2225_MOESM1_ESM.pdf

Boehmite-supported CuO as a catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Zeng, Z., Zhu, X. et al. Boehmite-supported CuO as a catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan. Front. Chem. Sci. Eng. 17, 415–424 (2023). https://doi.org/10.1007/s11705-022-2225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2225-4

Keywords

Navigation