Skip to main content

Advertisement

Log in

Zirconium-Containing Organic–Inorganic Nanohybrid as a Highly Efficient Catalyst for the Selective Synthesis of Biomass-Derived 2,5-Dihydroxymethylfuran in Isopropanol

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

By the simple assembly of zirconium tetrachloride and diethylenetriaminepentaacetic acid (DTPA), a new acid–base bifunctional zirconium-containing organic–inorganic nanohybrid catalyst (Zr-DTPA) was successfully prepared in this work, and then used for the catalytic transfer hydrogenation (CTH) of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-dihydroxymethylfuran (DHMF) using isopropanol as the in situ hydrogen donor and reaction solvent. Satisfactorily, 98.7% HMF conversion and 95.2% DHMF yield could be achieved in 4 h at a moderate reaction temperature of 140 °C. After systematic studies, this excellent catalytic activity was proved to be mainly ascribed to the synergistic effect of Lewis-acidic sites (Zr4+) and Lewis-basic sites (O2− and N) with higher strengths and contents. Meanwhile, Zr-DTPA could be readily separated by filtration, when it was repeatedly used 5 recycles, its catalytic activity was not obviously changed, demonstrating that Zr-DTPA had good heterogeneity and reusability. More importantly, Zr-DTPA could also be employed to effectively catalyze the CTH of 5-methylfurfural, furfural, levulinic acid, ethyl levulinate and cyclohexanone into the corresponding products with high yields, indicating that it showed a superior universality for the selective hydrogenation of various biomass-derived carbonyl compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, Z.R., Song, J.L., Han, B.X.: Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem. Rev. 117, 6834–6880 (2017)

    Article  Google Scholar 

  2. Shylesh, S., Gokhale, A.A., Ho, C.R., Bell, A.T.: Novel strategies for the production of fuels, lubricants, and chemicals from biomass. Acc. Chem. Res. 50, 2589–2597 (2017)

    Article  Google Scholar 

  3. Hu, L., Lin, L., Wu, Z., Zhou, S.Y., Liu, S.J.: Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renew. Sustain. Energy Rev. 74, 230–257 (2017)

    Article  Google Scholar 

  4. Wang, M., Ma, J.P., Liu, H.F., Luo, N.C., Zhao, Z.T., Wang, F.: Sustainable productions of organic acids and their derivatives from biomass via selective oxidative cleavage of C–C bond. ACS Catal. 8, 2129–2165 (2018)

    Article  Google Scholar 

  5. Li, H., Riisager, A., Saravanamurugan, S., Pandey, A., Sangwan, R.S., Yang, S., Luque, R.: Carbon-increasing catalytic strategies for upgrading biomass into enery-intensive fuels and chemicals. ACS Catal. 8, 148–187 (2018)

    Article  Google Scholar 

  6. Mika, L.T., Csefalvay, E., Nemeth, A.: Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem. Rev. 118, 505–613 (2018)

    Article  Google Scholar 

  7. Yu, I.K.M., Tsang, D.C.W.: Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms. Bioresour. Technol. 238, 716–732 (2017)

    Article  Google Scholar 

  8. Wang, T.F., Nolte, M.W., Shanks, B.H.: Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem. 16, 548–572 (2014)

    Article  Google Scholar 

  9. Zakrzewska, M.E., Bogel-Łukasik, E., Bogel-Łukasik, R.: Ionic liquid-mediated formation of 5-hydroxymethylfurfurals: a promising biomass-derived building block. Chem. Rev. 111, 397–417 (2011)

    Article  Google Scholar 

  10. Saha, B., Abu-Omar, M.M.: Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem. 16, 24–38 (2014)

    Article  Google Scholar 

  11. Bozell, J.J., Petersen, G.R.: Technology development for the production of biobased products from biorefinery carbohydrates - the US Department of Energy’s “Top 10” revisited. Green Chem. 12, 539–554 (2010)

    Article  Google Scholar 

  12. Van Putten, R.J., Van Der Waal, J.C., De Jong, E., Rasrendra, C.B., Heeres, H.J., De Vries, J.G.: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 113, 1499–1597 (2013)

    Article  Google Scholar 

  13. Teong, S.P., Yi, G.S., Zhang, Y.G.: Hydroxymethylfurfural production from bioresources: past, present and future. Green Chem. 16, 2015–2026 (2014)

    Article  Google Scholar 

  14. Kong, X., Zhu, Y.F., Fang, Z., Kozinski, J.A., Butler, I.S., Xu, L., Song, H., Wei, X.J.: Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives. Green Chem. 20, 3657–3682 (2018)

    Article  Google Scholar 

  15. Zhang, Z.H., Huber, G.W.: Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem. Soc. Rev. 47, 1351–1390 (2018)

    Article  Google Scholar 

  16. Gupta, K., Rai, R.K., Singh, S.K.: Metal catalysts for efficient transformation of biomass-derived HMF and furfural to value added chemicals: recent progress. ChemCatChem 10, 2326–2349 (2018)

    Article  Google Scholar 

  17. Hu, L., Xu, J.X., Zhou, S.Y., He, A.Y., Tang, X., Lin, L., Xu, J.M., Zhao, Y.J.: Catalytic advances in the production and application of biomass-derived 2,5-dihydroxymethylfuran. ACS Catal. 8, 2959–2980 (2018)

    Article  Google Scholar 

  18. Li, A.Y., Segalla, A., Li, C.J., Moores, A.: Mechanochemical metal-free transfer hydrogenation of carbonyls using polymethylhydrosiloxane as the hydrogen source. ACS Sustain. Chem. Eng. 5, 11752–11760 (2017)

    Article  Google Scholar 

  19. Pasini, T., Solinas, G., Zanotti, V., Albonetti, S., Cavani, F., Vaccari, A., Mazzanti, A., Ranieri, S., Mazzoni, R.: Substrate and product role in the Shvo’s catalyzed selective hydrogenation of the platform bio-based chemical 5-hydroxymethylfurfural. Dalton Trans. 43, 10224–10234 (2014)

    Article  Google Scholar 

  20. Moreau, C., Belgacem, M.N., Gandini, A.: Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top. Catal. 27, 11–30 (2014)

    Article  Google Scholar 

  21. Gelmini, A., Albonetti, S., Cavani, F., Cesari, C., Lolli, A., Zanotti, V., Mazzoni, R.: Oxidant free one-pot transformation of bio-based 2,5-bis-hydroxymethylfuran into α-6-hydroxy-6-methyl-4-enyl-2H-pyran-3-one in water. Appl. Catal. B: Environ. 180, 38–43 (2016)

    Article  Google Scholar 

  22. Nakagawa, Y., Tamura, M., Tomishige, K.: Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catal. 3, 2655–2668 (2013)

    Article  Google Scholar 

  23. Han, J.S., Kim, Y.H., Jang, H.S., Hwang, S.Y., Jegal, J., Kim, J.W., Lee, Y.S.: Heterogeneous zirconia-supported ruthenium catalyst for highly selective hydrogenation of 5-hydroxymethyl-2-furaldehyde to 2,5-bis(hydroxymethyl)furans in various n-alcohol solvents. RSC Adv. 6, 93394–93397 (2016)

    Article  Google Scholar 

  24. Liu, F., Audemar, M., De Oliveira Vigier, K., Clacens, J.M., De Campo, F., Jerome, F.: Palladium/carbon dioxide cooperative catalysis for the production of diketone derivatives from carbohydrates. ChemSusChem 7, 2089–2093 (2014)

    Article  Google Scholar 

  25. Ohyama, J., Kanao, R., Ohira, Y., Satsuma, A.: The effect of heterogeneous acid-base catalysis on conversion of 5-hydroxymethylfurfural into a cyclopentanone derivative. Green Chem. 18, 676–680 (2016)

    Article  Google Scholar 

  26. Xu, Y.J., Shi, J., Wu, W.P., Zhu, R., Li, X.L., Deng, J., Fu, Y.: Effect of Cp*Iridium(III) complex and acid co-catalyst on conversion of furfural compounds to cyclopentanones or straight chain ketones. Appl. Catal. A 543, 266–273 (2017)

    Article  Google Scholar 

  27. Balakrishnan, M., Sacia, E.R., Bell, A.T.: Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chem. 14, 1626–1634 (2012)

    Article  Google Scholar 

  28. Cao, Q., Liang, W.Y., Guan, J., Wang, L., Qu, Q., Zhang, X.Z., Wang, X.C., Mu, X.D.: Catalytic synthesis of 2,5-bis-methoxymethylfuran: a promising cetane number improver for diesel. Appl. Catal. A 481, 49–53 (2014)

    Article  Google Scholar 

  29. Lewis, J.D., Van de Vyver, S., Crisci, A.J., Gunther, W.R., Michaelis, V.K., Griffin, R.G., Roman-Leshkov, Y.: A continuous flow strategy for the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural using Lewis acid zeolites. ChemSusChem 7, 2255–2265 (2014)

    Article  Google Scholar 

  30. Gupta, D., Saha, B.: Dual acidic titania carbocatalyst for cascade reaction of sugar to etherified fuel additives. Catal. Commun. 110, 46–50 (2018)

    Article  Google Scholar 

  31. Li, X.L., Zhang, K., Chen, S.Y., Li, C., Li, F., Xu, H.J., Fu, Y.: A cobalt catalyst for reductive etherification of 5-hydroxymethylfurfural to 2,5-bis(methoxymethyl)furan under mild conditions. Green Chem. 20, 1095–1105 (2018)

    Article  Google Scholar 

  32. Han, J., Kim, J., Jung, B.Y., Hwang, S., Jegal, J., Kim, Y.H., Lee, Y.S.: Highly selective catalytic hydrogenation and etherification of 5-hydroxymethyl-2-furaldehyde to 2,5-bis(alkoxymethyl)furans for potential biodiesel production. Synlett 28, 2299–2302 (2017)

    Article  Google Scholar 

  33. Zeng, C., Seino, H., Ren, J., Hatanaka, K., Yoshie, N.: Bio-based furan polymers with self-healing ability. Macromolecules 46, 1794–1802 (2013)

    Article  Google Scholar 

  34. Jang, N.R., Kim, H.R., Hou, C.T., Kim, B.S.: Novel biobased photo-crosslinked polymer networks prepared from vegetable oil and 2,5-furan diacrylate. Polym. Adv. Technol. 24, 814–818 (2013)

    Article  Google Scholar 

  35. Lillie, L.M., Tolman, W.B., Reineke, T.M.: Structure/property relationships in copolymers comprising renewable isosorbide, glucarodilactone, and 2,5-bis(hydroxymethyl)furan subunits. Poly. Chem. 8, 3746–3754 (2017)

    Article  Google Scholar 

  36. Zhang, Y., Li, T., Xie, Z.N., Han, J.R., Xu, J., Guo, B.H.: Synthesis and properties of biobased multiblock polyesters containing poly(2,5-furandimethylene succinate) and poly(butylene succinate) blocks. Ind. Eng. Chem. Res. 56, 3937–3946 (2017)

    Article  Google Scholar 

  37. Upare, P.P., Hwang, Y.K., Hwang, D.W.: An integrated process for the production of 2,5-dihydroxymethylfuran and its polymer from fructose. Green Chem. 20, 879–885 (2018)

    Article  Google Scholar 

  38. Vijjamarri, S., Streed, S., Serum, E.M., Sibi, M.P., Du, G.D.: Polymers from bioderived resources: synthesis of poly(silylether)s from furan derivatives catalyzed by a Salen–Mn(V) complex. ACS Sustain. Chem. Eng. 6, 2491–2497 (2018)

    Article  Google Scholar 

  39. Hu, L., Tang, X., Xu, J.X., Wu, Z., Lin, L., Liu, S.J.: Selective transformation of 5-hydroxymethylfurfural into the liquid fuel 2,5-dimethylfuran over carbon-supported ruthenium. Ind. Eng. Chem. Res. 53, 3056–3064 (2014)

    Article  Google Scholar 

  40. Hu, L., Li, T., Xu, J.X., He, A.Y., Tang, X., Chu, X.Z., Xu, J.M.: Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-dihydroxymethylfuran over magnetic zirconium-based coordination polymer. Chem. Eng. J. 352, 110–119 (2018)

    Article  Google Scholar 

  41. Seemala, B., Cai, C.M., Wyman, C.E., Christopher, P.: Support induced control of surface composition in Cu-Ni/TiO2 catalysts enables high yield co-conversion of HMF and furfural to methylated furans. ACS Catal. 7, 4070–4082 (2017)

    Article  Google Scholar 

  42. Chen, J.Z., Liu, R.L., Guo, Y.Y., Chen, L.M., Gao, H.: Selective hydrogenation of biomass based 5-hydroxymethylfurfural over catalyst of palladium immobilized on amine-functionalized metal-organic frameworks. ACS Catal. 5, 722–733 (2015)

    Article  Google Scholar 

  43. Gao, Z., Li, C.Y., Fan, G.L., Yang, L., Li, F.: Nitrogen-doped carbon-decorated copper catalyst for highly efficient transfer hydrogenolysis of 5-hydroxymethylfurfural to convertibly produce 2,5-dimethylfuran or 2,5-dimethyltetrahydrofuran. Appl. Catal. B: Environ. 226, 523–533 (2018)

    Article  Google Scholar 

  44. Yao, S.X., Wang, X.C., Jiang, Y.J., Wu, F., Chen, X.G., Mu, X.D.: One-step conversion of biomass-derived 5-hydroxymethylfurfural to 1,2,6-hexanetriol over Ni-Co-Al mixed oxide catalysts under mild conditions. ACS Sustain. Chem. Eng. 2, 173–180 (2013)

    Article  Google Scholar 

  45. Buntara, T., Noel, S., Phua, P.H., Melián-Cabrera, I., de Vries, J.G., Heeres, H.J.: Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone. Angew. Chem. Int. Ed. 50, 7083–7087 (2011)

    Article  Google Scholar 

  46. Tuteja, J., Choudhary, H., Nishimura, S., Ebitani, K.: Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source. ChemSusChem 7, 96–100 (2014)

    Article  Google Scholar 

  47. Li, Y.M., Zhang, X.Y., Li, N., Xu, P., Lou, W.Y., Zong, M.H.: Biocatalytic reduction of HMF to 2,5-bis(hydroxymethyl)furan by HMF-tolerant whole cells. ChemSusChem 10, 372–378 (2017)

    Article  Google Scholar 

  48. Xu, Z.H., Cheng, A.D., Xing, X.P., Zong, M.H., Bai, Y.P., Li, N.: Improved synthesis of 2,5-bis(hydroxymethyl)furan from 5-hydroxymethylfurfural using acclimatized whole cells entrapped in calcium alginate. Bioresour. Technol. 262, 177–183 (2018)

    Article  Google Scholar 

  49. He, Y.C., Jiang, C.X., Chong, G.G., Di, J.H., Ma, C.L.: Biological synthesis of 2,5-bis(hydroxymethyl)furan from biomass-derived 5-hydroxymethylfurfural by E. coli CCZU-K14 whole cells. Bioresour. Technol. 247, 1215–1220 (2018)

    Article  Google Scholar 

  50. Chatterjee, M., Ishizaka, T., Kawanami, H.: Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan using Pt/MCM-41 in an aqueous medium: a simple approach. Green Chem. 16, 4734–4739 (2014)

    Article  Google Scholar 

  51. Shi, J.J., Zhang, M.Y., Du, W.C., Ning, W.S., Hou, Z.Y.: SnO2-isolated Pt3Sn alloy on reduced graphene oxide: an efficient catalyst for selective hydrogenation of C = O in unsaturated aldehydes. Catal. Sci. Technol. 5, 3108–3112 (2015)

    Article  Google Scholar 

  52. Ohyama, J., Hayashi, Y., Ueda, K., Yamamoto, Y., Arai, S., Satsuma, A.: Effect of FeOx modification of Al2O3 on its supported Au catalyst for hydrogenation of 5-hydroxymethylfurfural. J. Phys. Chem. C 120, 15129–15136 (2016)

    Article  Google Scholar 

  53. Hao, W.W., Li, W.F., Tang, X., Zeng, X.H., Sun, Y., Liu, S.J., Lin, L.: Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2,5-bishydroxymethyl furan. Green Chem. 18, 1080–1088 (2016)

    Article  Google Scholar 

  54. He, J., Li, H., Riisager, A., Yang, S.: Catalytic transfer hydrogenation of furfural to furfuryl alcohol with recyclable Al-Zr@Fe mixed oxides. ChemCatChem 10, 430–438 (2017)

    Article  Google Scholar 

  55. Wang, F., Zhang, Z.H.: Catalytic transfer hydrogenation of furfural into furfuryl alcohol over magnetic γ-Fe2O3@HAP catalyst. ACS Sustain. Chem. Eng. 5, 942–947 (2017)

    Article  Google Scholar 

  56. Guo, Y.Y., Chen, J.Z.: Photo-induced reduction of biomass-derived 5-hydroxymethylfurfural using graphitic carbon nitride supported metal catalysts. RSC Adv. 6, 101968–101973 (2016)

    Article  Google Scholar 

  57. Kwon, Y., De Jong, E., Raoufmoghaddam, S., Koper, M.T.: Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in the absence and presence of glucose. ChemSusChem 6, 1659–1667 (2013)

    Article  Google Scholar 

  58. Kwon, Y., Birdja, Y.Y., Raoufmoghaddam, S., Koper, M.T.: Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in acidic solution. ChemSusChem 8, 1745–1751 (2015)

    Article  Google Scholar 

  59. Kwon, Y., Schouten, K.J.P., Van Der Waal, J.C., De Jong, E., Koper, M.T.M.: Electrocatalytic conversion of furanic compounds. ACS Catal. 6, 6704–6717 (2016)

    Article  Google Scholar 

  60. Roylance, J.J., Kim, T.W., Choi, K.S.: Efficient and selective electrochemical and photoelectrochemical reduction of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan using water as the hydrogen source. ACS Catal. 6, 1840–1847 (2016)

    Article  Google Scholar 

  61. Kang, E.S., Chae, D.W., Kim, B., Kim, Y.G.: Efficient preparation of DHMF and HMFA from biomass-derived HMF via a Cannizzaro reaction in ionic liquids. J. Ind. Eng. Chem. 18, 174–177 (2012)

    Article  Google Scholar 

  62. Subbiah, S., Simeonov, S.P., Esperança, J.M.S.S., Rebelo, L.P.N., Afonso, C.A.M.: Direct transformation of 5-hydroxymethylfurfural to the building blocks 2,5-dihydroxymethylfurfural (DHMF) and 5-hydroxymethyl furanoic acid (HMFA) via Cannizzaro reaction. Green Chem. 15, 2849–2853 (2013)

    Article  Google Scholar 

  63. Li, G., Sun, Z., Yan, Y.E., Zhang, Y.H., Tang, Y.: Direct transformation of HMF into 2,5-diformylfuran and 2,5-dihydroxymethylfuran without an external oxidant or reductant. ChemSusChem 10, 494–498 (2017)

    Article  Google Scholar 

  64. Li, H., He, J., Riisager, A., Saravanamurugan, S., Song, B., Yang, S.: Acid-base bifunctional zirconium N-alkyltriphosphate nanohybrid for hydrogen transfer of biomass-derived carboxides. ACS Catal. 6, 7722–7727 (2016)

    Article  Google Scholar 

  65. Gilkey, M.J., Xu, B.J.: Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal. 6, 1420–1436 (2016)

    Article  Google Scholar 

  66. Li, H., Fang, Z., He, J., Yang, S.: Orderly layered Zr-benzylphosphonate nanohybrids for efficient acid-base-mediated bifunctional/cascade catalysis. ChemSusChem 10, 681–686 (2017)

    Article  Google Scholar 

  67. Wang, T., Zhang, J.H., Xie, W.X., Tang, Y.J., Guo, D.L., Ni, Y.H.: Catalytic transfer hydrogenation of biobased HMF to 2,5-bis-(hydroxymethyl)furan over Ru/Co3O4. Catalysts 7, 92–99 (2017)

    Article  Google Scholar 

  68. Gao, Z., Fan, G.L., Yang, L., Li, F.: Double-active sites cooperatively catalyzed transfer hydrogenation of ethyl levulinate over a ruthenium-based catalyst. Mol. Catal. 442, 181–190 (2017)

    Article  Google Scholar 

  69. Rojas-Buzo, S., Garcia-Garcia, P., Corma, A.: Catalytic transfer hydrogenation of biomass-derived carbonyls over hafnium-based metal-organic frameworks. ChemSusChem 11, 432–438 (2018)

    Article  Google Scholar 

  70. Li, H., Yang, T.T., Fang, Z.: Biomass-derived mesoporous Hf-containing hybrid for efficient Meerwein-Ponndorf-Verley reduction at low temperatures. Appl. Catal. B 227, 79–89 (2018)

    Article  Google Scholar 

  71. Lausund, K.B., Nilsen, O.: All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition. Nat. Commun. 7, 13578–13586 (2016)

    Article  Google Scholar 

  72. Li, D., Gu, M., Zhong, G.Q.: Synthesis and crystal structure of dinuclear bismuth( III) complex with ethylenediaminetetraacetate. J. Synth. Cryst. 42, 2726–2731 (2013)

    Google Scholar 

  73. Mondal, A., Ram, S.: Reconstructive phase formation of ZrO2 nanoparticles in a new orthorhombic crystal structure from an energized porous ZrO(OH)2·xH2O precursor. Ceram. Int. 30, 239–249 (2004)

    Article  Google Scholar 

  74. Mondal, A., Ram, S.: Monolithic ZrO2 nanopowder through a ZrO(OH)2·xH2O polymer precursor. J. Am. Ceram. Soc. 87, 2187–2194 (2004)

    Article  Google Scholar 

  75. Guo, G.Y., Chen, Y.L.: New zirconium hydroxide. J. Mater. Sci. 39, 4039–4043 (2004)

    Article  Google Scholar 

  76. Li, H., Liu, X.F., Yang, T.T., Zhao, W.F., Saravanamurugan, S., Yang, S.: Porous zirconium-furandicarboxylate microspheres for efficient redox conversion of biofuranics. ChemSusChem 18, 1761–1770 (2017)

    Article  Google Scholar 

  77. Xie, C., Song, J.L., Zhou, B.W., Hu, J.Y., Zhang, Z.R., Zhang, P., Jiang, Z.W., Han, B.X.: Porous hafnium phosphonate: novel heterogeneous catalyst for conversion of levulinic acid and esters into γ-valerolactone. ACS Sustain. Chem. Eng. 4, 6231–6236 (2016)

    Article  Google Scholar 

  78. Tang, X., Zeng, X.H., Li, Z., Li, W.F., Jiang, Y.T., Hu, L., Liu, S.J., Sun, Y., Lin, L.: In situ generated catalyst system to convert biomass-derived levulinic aid to γ-valerolactone. ChemCatChem 7, 1372–1379 (2015)

    Article  Google Scholar 

  79. Hu, L., Yang, M., Xu, N., Xu, J.X., Zhou, S.Y., Chu, X.Z., Zhao, Y.J.: Selective transformation of biomass-derived 5-hydroxymethylfurfural into 2,5-dihydroxymethylfuran via catalytic transfer hydrogenation over magnetic zirconium hydroxides. Korean J. Chem. Eng. 35, 99–109 (2018)

    Article  Google Scholar 

  80. Song, J.L., Zhou, B.W., Zhou, H.C., Wu, L.Q., Meng, Q.L., Liu, Z.M., Han, B.X.: Porous zirconium-phytic acid hybrid: a highly efficient catalyst for Meerwein-Ponndorf-Verley reductions. Angew. Chem. Int. Ed. 54, 9399–9403 (2015)

    Article  Google Scholar 

  81. Xue, Z.M., Jiang, J.Y., Li, G.F., Zhao, W.C., Wang, J.F., Mu, T.C.: Zirconium-cyanuric acid coordination polymer: highly efficient catalyst for conversion of levulinic acid to γ-valerolactone. Catal. Sci. Technol. 6, 5374–5379 (2016)

    Article  Google Scholar 

  82. Song, J.L., Wu, L.Q., Zhou, B.W., Zhou, H.C., Fan, H.L., Yang, Y.Y., Meng, Q.L., Han, B.X.: New porous Zr-containing catalyst with phenate group: efficient catalyst for catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone. Green Chem. 17, 1626–1632 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21506071 and 51602118) and the Special Foundation of Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection (HSXT2-316).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Hu or Jiaxing Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6,247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Liu, S., Song, J. et al. Zirconium-Containing Organic–Inorganic Nanohybrid as a Highly Efficient Catalyst for the Selective Synthesis of Biomass-Derived 2,5-Dihydroxymethylfuran in Isopropanol. Waste Biomass Valor 11, 3485–3499 (2020). https://doi.org/10.1007/s12649-019-00703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00703-z

Keywords

Navigation