Skip to main content
Log in

Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) titanium carbide MXene Ti3C2 has attracted significant research interest in energy storage applications. In this study, we prepared Chl@Ti3C2 composites by simply mixing a chlorophyll derivative (e.g., zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide a (Chl)) and Ti3C2 in tetrahydrofuran, where the Chl molecules were aggregated among the multi-layered Ti3C2 MXene or on its surface, increasing the interlayer space of Ti3C2. The as-prepared Chl@Ti3C2 was employed as the anode material in the lithium-ion battery (LIB) with lithium metal as the cathode. The resulting LIB exhibited a higher reversible capacity and longer cycle performance than those of LIB based on pure Ti3C2, and its specific discharge capacity continuously increased along with the increasing number of cycles, which can be attributed to the gradual activation of Chl@Ti3C2 accompanied by the electrochemical reactions. The discharge capacity of 1 wt-% Chl@Ti3C2 was recorded to be 325 mA·h·g−1 at the current density of 50 mA·g−1 with a Coulombic efficiency of 56% and a reversible discharge capacity of 173 mA·h·g−1 at the current density of 500 mA·g−1 after 800 cycles. This work provides a novel strategy for improving the energy storage performance of 2D MXene materials by expanding the layer distance with organic dye aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ji L W, Lin Z, Alcoutlabi M, Zhang X W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science, 2011, 4(8): 2682–2699

    Article  CAS  Google Scholar 

  2. Zhang C, Xie Y, Wang J, Pentecost A, Long D, Ling L, Qiao W. Effect of graphitic structure on electrochemical ion intercalation into positive and negative electrodes. Journal of Solid State Electrochemistry, 2014, 18(10): 2673–2682

    Article  CAS  Google Scholar 

  3. Ferry V E, Munday J N, Atwater H A. Design considerations for plasmonic photovoltaics. Advanced Materials, 2010, 22(43): 4794–4808

    Article  CAS  Google Scholar 

  4. Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451(7179): 652–657

    Article  CAS  Google Scholar 

  5. Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Letters, 2011, 11(7): 2949–2954

    Article  CAS  Google Scholar 

  6. Sheng T, Xu Y F, Jiang Y X, Huang L, Tian N, Zhou Z Y, Broadwell I, Sun S G. Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage. Accounts of Chemical Research, 2016, 49(11): 2569–2577

    Article  CAS  Google Scholar 

  7. Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(16): 2930–2946

    Article  CAS  Google Scholar 

  8. Reddy A L M, Gowda S R, Shaijumon M M, Ajayan P M. Hybrid nanostructures for energy storage applications. Advanced Materials, 2012, 24(37): 5045–5064

    Article  CAS  Google Scholar 

  9. Eames C, Islam M S. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. Journal of the American Chemical Society, 2014, 136(46): 16270–16276

    Article  CAS  Google Scholar 

  10. Sun S, Liao C, Hafez A M, Zhu H, Wu S. Two-dimensional MXenes for energy storage. Chemical Engineering Journal, 2018, 338: 27–45

    Article  CAS  Google Scholar 

  11. Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters, 2008, 8(8): 2277–2282

    Article  CAS  Google Scholar 

  12. Reddy M V, Subba Rao G V, Chowdari B V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical Reviews, 2013, 113(7): 5364–5457

    Article  CAS  Google Scholar 

  13. Cao L, Fan P, Vasudev A P, White J S, Yu Z, Cai W, Schuller J A, Fan S, Brongersma M L. Semiconductor nanowire optical antenna solar absorbers. Nano Letters, 2010, 10(2): 439–145

    Article  CAS  Google Scholar 

  14. Mashtalir O, Naguib M, Mochalin V N, Dall’Agnese Y, Heon M, Barsoum M W, Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 2013, 4(1): 1716

    Article  Google Scholar 

  15. Naguib M, Come J, Dyatkin B, Presser V, Taberna P L, Simon P, Barsoum M W, Gogotsi Y. Mxene: a promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 2012, 16(1): 61–64

    Article  CAS  Google Scholar 

  16. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248–4253

    Article  CAS  Google Scholar 

  17. Pourali Z, Sovizi M R, Yaftian M R. Two-dimensional Ti3C2Tx/CMK-5 nanocomposite as high performance anodes for lithium batteries. Journal of Alloys and Compounds, 2018, 738: 130–137

    Article  CAS  Google Scholar 

  18. Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78–81

    Article  CAS  Google Scholar 

  19. Zou G, Zhang Z, Guo J, Liu B, Zhang Q, Fernandez C, Peng Q. Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Applied Materials & Interfaces, 2016, 8(34): 22280–22286

    Article  CAS  Google Scholar 

  20. Zhu J, Tang Y, Yang C, Wang F, Cao M. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. Journal of the Electrochemical Society, 2016, 163(5): A785–A791

    Article  CAS  Google Scholar 

  21. Wang Y, Li Y, Qiu Z, Wu X, Zhou P, Zhou T, Zhao J, Miao Z, Zhou J, Zhuo S. Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6(24): 11189–11197

    Article  CAS  Google Scholar 

  22. Zhang X, Zhang Z, Zhou Z. Mxene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 2018, 27(1): 73–85

    Article  Google Scholar 

  23. Cao W T, Ma C, Tan S, Ma M G, Wan P B, Chen F. Ultrathin and flexible CNTs/MXene/Cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Letters, 2019, 11(1): 72

    Article  CAS  Google Scholar 

  24. Aierken Y, Sevik C, Gülseren O, Peeters F M, Çakir D. Mxenes/graphene heterostructures for Li battery applications: a first principles study. Journal of Materials Chemistry A, 2018, 6(5): 2337–2345

    Article  CAS  Google Scholar 

  25. Boota M, Pasini M, Galeotti F, Porzio W, Zhao M Q, Halim J, Gogotsi Y. Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): intercalation and pseudocapacitance. Chemistry of Materials, 2017, 29(7): 2731–2738

    Article  CAS  Google Scholar 

  26. Luo J, Tao X, Zhang J, Xia Y, Huang H, Zhang L, Gan Y, Liang C, Zhang W. Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 2016, 10(2): 2491–2499

    Article  CAS  Google Scholar 

  27. Fan X, Liu L, Jin X, Wang W, Zhang S, Tang B. Mxene Ti3C2Tx for phase change composite with superior photothermal storage capability. Journal of Materials Chemistry A, 2019, 7(23): 14319–14327

    Article  CAS  Google Scholar 

  28. Yan J, Ren C E, Maleski K, Hatter C B, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 2017, 27(30): 1701264

    Article  Google Scholar 

  29. Dong X, Ding B, Guo H, Dou H, Zhang X. Superlithiated polydopamine derivative for high-capacity and high-rate anode for lithium-ion batteries. ACS Applied Materials & Interfaces, 2018, 10(44): 38101–38108

    Article  CAS  Google Scholar 

  30. Liu K, Zheng J, Zhong G, Yang Y. Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries. Journal of Materials Chemistry, 2011, 21(12): 4125–4131

    Article  CAS  Google Scholar 

  31. Liang Y, Zhang P, Yang S, Tao Z, Chen J. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Advanced Energy Materials, 2013, 3(5): 600–605

    Article  CAS  Google Scholar 

  32. Ghidiu M, Kota S, Halim J, Sherwood A W, Nedfors N, Rosen J, Mochalin V N, Barsoum M W. Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chemistry of Materials, 2017, 29(3): 1099–1106

    Article  CAS  Google Scholar 

  33. Boota M, Anasori B, Voigt C, Zhao M Q, Barsoum M W, Gogotsi Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 2016, 28(7): 1517–1522

    Article  CAS  Google Scholar 

  34. Sun D, Wang M, Li Z, Fan G, Fan L Z, Zhou A. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochemistry Communications, 2014, 47: 80–83

    Article  Google Scholar 

  35. Tamiaki H, Amakawa M, Shimono Y, Tanikaga R, Holzwarth A R, Schaffner K. Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria. Photochemistry and Photobiology, 1996, 63(1): 92–99

    Article  CAS  Google Scholar 

  36. Du F, Tang H, Pan L, Zhang T, Lu H, Xiong J, Yang J, Zhang C. Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochimica Acta, 2017, 235: 690–699

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Yohan Dall’Agnese for reading the manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 11974129) to Xiao-Feng Wang, the Fundamental Research Funds for the Central Universities, Jilin University, the Science and Technology Development Plan of Jilin Province (Grant Nos. 20180414010GH, 20190201133JC) and Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant No. JP17H06436) to Hitoshi Tamiaki.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aijun Li or Xiao-Feng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Zhao, X., Tang, J. et al. Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage. Front. Chem. Sci. Eng. 15, 709–716 (2021). https://doi.org/10.1007/s11705-020-1984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1984-z

Keywords

Navigation