Skip to main content

Advertisement

Log in

One-pot synthesis of NiCoP/CNTs composites for lithium ion batteries and hydrogen evolution reaction

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Transition metal phosphides have tremendous potential in the fields of eletrocatalysis and energy storage due to their excellent conductivity and high theoretical specific capacity. In this work, we prepared the composites of NiCoP and carbon nanotubes (CNTs) by one-pot method, and their lithium storage and electrocatalytic hydrogen evolution performance were studied. The experimental results indicated that as an anode material for lithium ion batteries (LIBs), the specific capacity of NiCoP/CNTs composites reaches 200 mA h g−1 after 200 cycles at 0.1 A g−1. The one-pot method can disperse CNTs inside and between the particles of the NiCoP, which can effectively promote the conductivity of the composites and increase the activity of internal materials. In addition, NiCoP/CNTs also showed good electrocatalytic hydrogen evolution reaction (HER) performance in acidic electrolyte. When the current density was 10 mA cm−2, the overpotential was 267 mV and the Tafel slope was 87.54 mV dec−1. Compared with pure NiCoP, the good electrochemical performance of NiCoP/CNTs results from the close contact between CNTs and NiCoP, which increases the conductivity and active area of the material. Therefore, the one-pot method for preparing CNTs composites can be used to enhance the electrochemical properties of inorganic nanomaterials. It provides a feasible solution for the modification of electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yan Y, Xia BY, Zhao B, Wang X (2016) A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J Mater Chem A 4(45):17587–17603

    Article  CAS  Google Scholar 

  2. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321):eaad4998

  3. Faber MS, Jin S (2014) Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ Sci 7(11):3519–3542

    Article  CAS  Google Scholar 

  4. Fengmei Wang TAS, Xueying Zhan, Yun Huang, Kaili Liu, Zhongzhou, Cheng CJaJH (2015) Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale 7:19764–19788

  5. Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater 11(6):550–557

    Article  CAS  Google Scholar 

  6. Jue Hu CZ, Meng X, He L, Hu C, Long X, Yang S (2013) Hydrogen evolution electrocatalysis with binary-nonmetal. J Mater Chem A 5:5995–6012

    Google Scholar 

  7. Liu X, Dai L (2016) Carbon-based metal-free catalysts. Nature Reviews Materials 22(11):1021–1029

    Google Scholar 

  8. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365

    Article  CAS  Google Scholar 

  9. Lv Y, Liu Y, Chen C, Wang T, Zhang M (2018) Octopus tentacles-like WO 3 /C@CoO as high property and long life-time electrocatalyst for hydrogen evolution reaction. Electrochim Acta 281:1–8

    Article  CAS  Google Scholar 

  10. Deng S, Zhang K, Xie D, Zhang Y, Zhang Y, Wang Y et al (2019) High-index-faceted Ni3S2 branch arrays as Bifunctional Electrocatalysts for efficient water splitting. Nano-Micro Letters 11(1)

  11. Deng S, Zhong Y, Zeng Y, Wang Y, Wang X, Lu X, Xia X, Tu J (2018) Hollow TiO2@Co9S8 Core-branch arrays as Bifunctional Electrocatalysts for efficient oxygen/hydrogen production. Advanced science 5(3):1700772

    Article  Google Scholar 

  12. Deng S, Yang F, Zhang Q, Zhong Y, Zeng Y, Lin S, et al (2018) Phase modulation of (1T-2H)-MoSe2/TiC-C Shell/Core arrays via nitrogen doping for highly efficient hydrogen evolution reaction. Adv mater e1802223

  13. Deng S, Ai C, Luo M, Liu B, Zhang Y, Li Y, Lin S, Pan G, Xiong Q, Liu Q, Wang X, Xia X, Tu J (2019) Coupled Biphase (1T-2H)-MoSe2 on Mold spore carbon for advanced hydrogen evolution reaction. Small 15(30):e1901796

    Article  Google Scholar 

  14. Deng S, Zhong Y, Zeng Y, Wang Y, Yao Z, Yang F et al (2017) Directional construction of vertical nitrogen-doped 1T-2H MoSe2 /Graphene Shell/Core Nanoflake arrays for efficient hydrogen evolution reaction. Adv Mater 29(21)

  15. Li Y, Li H, Cao K, Jin T, Wang X, Sun H et al (2018) Electrospun three dimensional co/CoP@nitrogen-doped carbon nanofibers network for efficient hydrogen evolution. Energy Storage Materials 12:44–53

    Article  Google Scholar 

  16. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135(25):9267–9270

    Article  CAS  Google Scholar 

  17. Huang C, Pi C, Zhang X, Ding K, Qin P, Fu J et al (2018) In situ synthesis of MoP Nanoflakes intercalated N-doped Graphene Nanobelts from MoO3-amine hybrid for high-efficient hydrogen evolution reaction. Small 14(25):1800667

    Article  Google Scholar 

  18. Deng S, Zhang Y, Xie D, Yang L, Wang G, Zheng X et al (2019) Oxygen vacancy modulated Ti2Nb10O29-x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage. Nano Energy 58:355–364

    Article  CAS  Google Scholar 

  19. Wu R, Qian X, Rui X, Liu H, Yadian B, Zhou K, Wei J, Yan Q, Feng XQ, Long Y, Wang L, Huang Y (2014) Zeolitic imidazolate framework 67-derived high symmetric porous co(3)O(4) hollow dodecahedra with highly enhanced lithium storage capability. Small 10(10):1932–1938

    Article  CAS  Google Scholar 

  20. Wu R, Qian X, Zhou K, Wei J, Lou J, Ajayan PM (2014) Porous spinel Zn(x)co(3-x)O(4) hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 8(6):6297–6303

    Article  CAS  Google Scholar 

  21. Hu H, Zhang J, Guan B, Lou XW (2016) Unusual formation of CoSe@carbon Nanoboxes, which have an inhomogeneous Shell, for efficient Lithium storage. Angew Chem 55(33):9514–9518

    Article  CAS  Google Scholar 

  22. Wu R, Wang DP, Rui X, Liu B, Zhou K, Law AW, et al (2015) In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv Mater 27(19):3038–4423. Kim MG, Cho J (2009) Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv Funct Mater 19(10):1497–1514

  23. S. Boyanov JB, E. Bekaert ,M. Metrier. M.-L. Doublet and L. Monconduit (2009) P-redox mechanism at the origin of the high Lithium storage in NiP2-based batteries. Chem Mater 21:298–308

  24. Cui Y-H, Xue M-Z, Fu Z-W, Wang X-L, Liu X-J (2013) Nanocrystalline CoP thin film as a new anode material for lithium ion battery. J Alloys Compd 555:283–290

    Article  CAS  Google Scholar 

  25. Yang D, Zhu J, Rui X, Tan H, Cai R, Hoster HE, Yu DY, Hng HH, Yan Q (2013) Synthesis of cobalt phosphides and their application as anodes for Lithium ion batteries. ACS Appl Mater Interfaces 5(3):1093–1099

    Article  Google Scholar 

  26. Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):E170–E192

    Article  CAS  Google Scholar 

  27. Malini R, Uma U, Sheela T, Ganesan M, Renganathan NG (2008) Conversion reactions: a new pathway to realise energy in lithium-ion battery. Review. Ionics 15(3):301–307

    Article  Google Scholar 

  28. Palacin MR (2009) Recent advances in rechargeable battery materials: a chemist's perspective. Chem Soc Rev 38(9):2565–2575

    Article  CAS  Google Scholar 

  29. Dong C, Guo L, He Y, Chen C, Qian Y, Chen Y et al (2018) Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Energy Storage Materials 15:234–241

    Article  Google Scholar 

  30. Wu C, Kopold P, van Aken PA, Maier J, Yu Y (2017) High performance Graphene/Ni2 P hybrid anodes for Lithium and sodium storage through 3D yolk-Shell-like Nanostructural design. Adv Mater 29(3)

  31. Hou S, Xu X, Wang M, Xu Y, Lu T, Yao Y et al (2017) Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. J Mater Chem A 5(36):19054–19061

    Article  CAS  Google Scholar 

  32. Pei Y, Yang Y, Zhang F, Dong P, Baines R, Ge Y, Chu H, Ajayan PM, Shen J, Ye M (2017) Controlled Electrodeposition synthesis of co-Ni-P film as a flexible and inexpensive electrode for efficient overall water splitting. ACS Appl Mater Interfaces 9(37):31887–31896

    Article  CAS  Google Scholar 

  33. Ge X, Li Z, Yin L (2017) Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 32:117–124

    Article  CAS  Google Scholar 

  34. Zhang X-Y, Guo B-Y, Chen Q-W, Dong B, Zhang J-Q, Qin J-F et al (2019) Ultrafine and highly-dispersed bimetal Ni2P/Co2P encapsulated by hollow N-doped carbon nanospheres for efficient hydrogen evolution. Int J Hydrog Energy 44(29):14908–14917

    Article  CAS  Google Scholar 

  35. Lu Y, J-p T, Q-q X, Zhang H, C-d G, Wang X-l et al (2012) Large-scale synthesis of porous Ni2P nanosheets for lithium secondary batteries. CrystEngComm 14(24):8633–8641

    Article  CAS  Google Scholar 

  36. Lu Y, Wang X, Mai Y, Xiang J, Zhang H, Li L et al (2012) Ni2P/Graphene sheets as anode materials with enhanced electrochemical properties versus Lithium. J Phys Chem C 116(42):22217–22225

    Article  CAS  Google Scholar 

  37. Lu Y, Tu JP, Xiang JY, Wang XL, Zhang J, Mai YJ et al (2011) Improved electrochemical performance of self-assembled hierarchical nanostructured nickel phosphide as a negative electrode for Lithium ion batteries. J Phys Chem C 115(48):23760–23767

    Article  CAS  Google Scholar 

  38. Wang C, Qian Y, Yang J, Xing S, Ding X, Yang Q (2017) Ternary NiCoP nanoparticles assembled on graphene for high-performance lithium-ion batteries and supercapacitors. RSC Adv 7(42):26120–26124

    Article  CAS  Google Scholar 

  39. Sun C, Yang M, Wang T, Shao Y, Wu Y, Hao X (2017) Graphene-oxide-assisted synthesis of GaN Nanosheets as a new anode material for Lithium-ion battery. ACS Appl Mater Interfaces 9(32):26631–26636

    Article  CAS  Google Scholar 

  40. Guo H, Chen C, Chen K, Cai H, Chang X, Liu S et al (2017) High performance carbon-coated hollow Ni12P5 nanocrystals decorated on GNS as advanced anodes for lithium and sodium storage. J Mater Chem A 5(42):22316–22324

    Article  CAS  Google Scholar 

  41. Zhang L, He W, Ling M, Shen K, Liu Y, Guo S (2017) Self-standing MgMoO4/reduced Graphene oxide Nanosheet arrays for Lithium and sodium ion storage. Electrochim Acta 252:322–330

    Article  CAS  Google Scholar 

  42. Wang W, Li J, Bi M, Zhao Y, Chen M, Fang Z (2018) Dual function flower-like CoP/C nanosheets: high stability lithium-ion anode and excellent hydrogen evolution reaction catalyst. Electrochim Acta 259:822–829

    Article  CAS  Google Scholar 

  43. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786

    Article  CAS  Google Scholar 

  44. Liu T, Asiri AM, Sun X (2016) Electrodeposited co-doped NiSe2 nanoparticles film: a good electrocatalyst for efficient water splitting. Nanoscale 8(7):3911–3915

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Programme for Changjiang Scholars and Innovative Research Team in University (IRT_15R56), the National Natural Science Foundation of China (Grant No. 21865032 and 21664012), the Innovation Team Basic Scientific Research Project of Gansu Province (1606RJIA324), the Science and Technology Plan Project of Gansu Province (17JR5RA068), the Programmed for Colleges and Universities in Gansu Province (2017A-007), the Foundation of Gansu University of Political Science and Law (GZF2018XZDLW16), the Foundation of Judicial Expertise Center of Gansu University of Political Science and Law (jdzxzd2018-02), Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, and Key Laboratory of Eco-environmental Polymer Materials of Gansu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingtao Wang or Shufang Ren.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Hou, M., Huang, Y. et al. One-pot synthesis of NiCoP/CNTs composites for lithium ion batteries and hydrogen evolution reaction. Ionics 26, 1771–1778 (2020). https://doi.org/10.1007/s11581-019-03362-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03362-1

Keywords

Navigation