Skip to main content
Log in

Acid strength of Ni–S2O 2−8 /ZrO2 catalyst and its catalytic activity for n-pentane isomerization

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A series of bifunctional Ni–S2O8 2−/ZrO2 (Ni x -SSZ-T) catalysts with different Ni mass fraction (x, %) and calcintion temperature (T, °C) were prepared by impregnation method. The catalysts were characterized by XRD, FTIR, and py-FTIR. The effects of Ni content and calcination temperature on the acidic property and isomerization performance of catalyst were investigated using n-pentane isomerization as a probe reaction. The results show that the acidity of Ni x -SSZ-T catalysts mainly derives from L acid. The addition of a suitable amount of Ni can induce the formation of more acid sites and in turn enhance the isomerization performance of Ni x -SSZ-T catalyst. With increasing the calcination temperature from 550 to 700°C, B acid strength of catalyst weakens gradually, while the L acid strength increases first and then decreases. The Ni x -SSZ-T catalyst with Ni content of 1 wt % and calcination temperature of 650°C exhibits the best isomerization performance. At reaction temperature of 230°C, pressure of 2. 0 MPa hydrogen /hydrocarbon molar ratio of 4: 1, and weight hourly space velocity (WHSV) of 1.0 h−1 the isopentane yield reaches 57.0%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, X., Liu, T., and Xie, P.F., Catal. Commun., 2014, vol. 54, p. 77.

    Article  CAS  Google Scholar 

  2. Yasutaka, K., Wako, K., Koji, N., and Fujitani, T., Appl. Catal. A Gen., 2014, vol. 476, p. 186.

    Article  Google Scholar 

  3. Scholz, J., Walter, A., and Ressler, T., J. Catal., 2014, vol. 309, p. 105.

    Article  CAS  Google Scholar 

  4. Wang, R., Wan, J.B., Li, Y.H., and Sun, H.W., Fuel, 2015, vol. 143, p. 504.

    Article  CAS  Google Scholar 

  5. González, M.D., Salagre, P., Linares, M., García, R., Serrano, D., and Cesteros, Y., Appl. Catal. A Gen., 2014, vol. 473, p. 75.

    Article  Google Scholar 

  6. Oliveira, A.C., Essayem, N., Tuel, A., and Taârit, Y.B., React. Kinet. Catal. Lett., 2006, vol. 89, p. 123.

    Article  CAS  Google Scholar 

  7. Ahmed, M.A., Fuel Process. Technol., 2011, vol. 92, p. 1121.

    Article  CAS  Google Scholar 

  8. Fraenkel, D., Jentzsch, N.R., Starr, C.A., and Nikrad, P.V., J. Catal., 2010, vol. 274, p. 29.

    Article  CAS  Google Scholar 

  9. Gillespie, R.J. and Peel, T.E., Adv. Phys. Org. Chem., 1971, vol. 9, p. 1.

    CAS  Google Scholar 

  10. Chen, W.H., Ko, H.H., and Sakthivel, A., Catal. Today, 2006, vol. 116, p. 111.

    Article  CAS  Google Scholar 

  11. Noda, L,K,, Almeida de R,M,, Probst, L.F.D., and Gonçalves, N.S., J. Mol. Catal. A-Chem., 2005, vol. 225, p. 39.

    Article  CAS  Google Scholar 

  12. Hino, M., Kurashige, M., Matsuhashi, H., and Arata, K.. Thermochim. Acta, 2006, vol. 441, p. 35.

    Article  CAS  Google Scholar 

  13. Wang, W., Wang, J.H., Chen, C.L., Xu, N.P., and Mou, X.Y., Catal. Today, 2004, vol. 97, p. 307.

    Article  CAS  Google Scholar 

  14. Raissi, S., Younes, M.K., and Ghorbel, A., J. Porous Mater., 2010, vol. 17, p. 275.

    Article  CAS  Google Scholar 

  15. Yu, G.X., Lin, D.L., Hu, Y., and Zhou, X.L., Catal. Today, 2011, vol. 166, p. 84.

    Article  CAS  Google Scholar 

  16. Busto, M., Dosso, L.A., Vera, C.R., and Grau, J.M., Fuel Process. Technol., 2012, vol. 104, p. 128.

    Article  CAS  Google Scholar 

  17. Yang, Y.C. and Weng, H.S., Appl. Catal. A Gen., 2010, vol. 384, p. 94.

    Article  CAS  Google Scholar 

  18. Heshmatpour, F. and Aghakhanpour, R.B., Adv. Powder Technol., 2012, vol. 23, p. 80.

    Article  CAS  Google Scholar 

  19. Yu, F., Guo, M., and Wang, X., J. Fuel Chem. Technol., 2013, vol. 41, p. 456.

    Article  CAS  Google Scholar 

  20. Li, R.F., Yu, F., Li, F.X., Zhou, M.M., Xu, B.S., and Xie, K.C., J. Solid State Chem., 2009, vol. 182, p. 991.

    Article  CAS  Google Scholar 

  21. Smirnova, M.Y., Toktarev, A.V., Ayupov, A.B., and Echevsky, G.V., Catal. Today, 2010, vol. 152, p. 17.

    Article  CAS  Google Scholar 

  22. Yadav, G.D. and Murkute, A.D., Adv. Synth. Catal., 2004, vol. 346, p. 389.

    Article  CAS  Google Scholar 

  23. Volkova, G.G., Reshetnikov, S.I,, Shkuratova, L.N., Budneva, A.A., and Paukshtis, E.A., Chem. Eng. J., 2007, vol. 134, p. 106.

    Article  CAS  Google Scholar 

  24. Triwahyono, S., Jalilb, A.A., and Musthofa, M., Appl. Catal. A Gen., 2010, vol. 372, p. 90.

    Article  CAS  Google Scholar 

  25. Fan, G.D., Shen, M., Zhang, Z., and Jia, F.R., J. Rare Earth, 2009, vol. 27, p. 437.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Song.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Meng, Y., Song, H. et al. Acid strength of Ni–S2O 2−8 /ZrO2 catalyst and its catalytic activity for n-pentane isomerization. Russ J Appl Chem 89, 670–678 (2016). https://doi.org/10.1134/S1070427216040224

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216040224

Navigation