Skip to main content
Log in

A high-throughput screening method for improved R-2-(4-hydroxyphenoxy)propionic acid biosynthesis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

R-2-(4-hydroxyphenoxy)propionic acid (R-HPPA) is a key intermediate of the enantiomerically pure phenoxypropionic acid herbicides. R-HPPA could be biosynthesized through selective introduction of a hydroxyl group (–OH) into the substrate R-2-phenoxypropionic acid (R-PPA) at C-4 position, facilitated by microorganisms with hydroxylases. In this study, an efficient high-throughput screening method for improved R-HPPA biosynthesis through microbial hydroxylation was developed. As a hydroxylated aromatic product, R-HPPA could be oxidized by oxidant potassium dichromate to form brown-colored quinone-type compound. The concentration of R-HPPA can be quantified according to the absorbance of the colored compound at a suitable wavelength of 570 nm; and the R-HPPA biosynthetic capability of microorganism strains could also be rapidly evaluated. After optimization of the assay conditions, the high-throughput screening method was successfully used in identification of Beauveria bassiana mutants with enhanced R-HPPA biosynthesis capacity. A positive mutant C-7 with high tolerance to 20 g/L R-PPA was rapidly selected from 1920 mutants. The biomass and R-HPPA titer were 12.5- and 38.19-fold higher compared with the original strain at 20 g/L R-PPA. This high-throughput screening method developed in this work could also be a potential tool for screening strains producing other important phenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brown RB, Kruse JA, Counts GW, Russell JA, Christou NV, Sands ML, the Endotracheal Tobramycin Study Group (1990) Double-blind study of endotracheal tobramycin in the treatment of gram-negative bacterial pneumonia. Antimicrob Agents Chemother 34:269–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ishige T, Honda K, Shimizu S (2005) Whole organism biocatalysis. Curr Opin Chem Biol 9:174–180

    Article  CAS  PubMed  Google Scholar 

  3. Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293

    Article  CAS  PubMed  Google Scholar 

  4. Kinne M, Ullrich R, Hammel KE, Scheibner K, Hofrichter M (2008) Regioselective preparation of (R)-2-(4-hydroxyphenoxy)propionic acid with a fungal peroxygenase. Tetrahedron Lett 49:5950–5953

    Article  CAS  Google Scholar 

  5. Shoji O, Wiese C, Fujishiro T, Shirataki C, Wunsch B, Watanabe Y (2010) Aromatic C-H bond hydroxylation by P450 peroxygenases: a facile chromogenic assay for monooxygenation activities of enzymes based on Russig’s blue formation. J Biol Inorg Chem 15:1109–1115

    Article  CAS  PubMed  Google Scholar 

  6. Boersma MG, Primus J-L, Koerts J, Veeger C, Rietjens IMCM (2000) Heme-(hydro)peroxide mediated O- and N-dealkylation. Eur J Biochem 267:6673–6678

    Article  CAS  PubMed  Google Scholar 

  7. Yarman A, Badalyan A, Gajovic-Eichelmann N, Wollenberger U, Scheller FW (2011) Enzyme electrode for aromatic compounds exploiting the catalytic activities of microperoxidase-11. Biosens Bioelectron 30:320–323

    Article  CAS  PubMed  Google Scholar 

  8. Peng L, Wollenberger U, Kinne M, Hofrichter M, Ullrich R, Scheibner K, Fischer A (2010) Scheller FW, Peroxygenase based sensor for aromatic compounds. Biosens Bioelectron 26:1432–1436

    Article  CAS  PubMed  Google Scholar 

  9. Kluge M, Ullrich R, Dolge C, Scheibner K, Hofrichter M (2009) Hydroxylation of naphthalene by aromatic peroxygenase from Agrocybe aegerita proceeds via oxygen transfer from H2O2 and intermediary epoxidation. Appl Microbiol Biotechnol 81:1071–1076

    Article  CAS  PubMed  Google Scholar 

  10. Dingler C, Ladner W, Krei GA, Cooper B, Hauer B (1996) Preparation of (R)-2-(4-hydroxyphenoxy) propionic acid by biotransformation. Pestic Sci 46:33–35

    Article  CAS  Google Scholar 

  11. Ladner W, Staudenmaier HR, Hauer B, Mueller U, Pressler U, Meyer J, Siegel H, Process for the hydroxylation of aromatic acids using strains of the fungus Beauveria, United States Patent, No. 5928912, 1999-07-27

  12. Holland HL, Morris TA, Nava PJ, Zabic M (1999) A new paradigm for biohydroxylation by Beauveria bassiana ATCC 7159. Tetrahedron 55:7441–7460

    Article  CAS  Google Scholar 

  13. Cooper B, Ladner W, Hauer B, Siegel H, Preparation of 2-(4-hydroxyphenoxy)propionic acid by fermentation, United States Patent, No. 5296363, 1994-3-22

  14. Tang XL, Suo H, Zheng RC, Zheng YG (2018) An efficient chromogenic high-throughput screening method for synthetic activity of tyrosine phenol-lyase. Anal Biochem 560:7–11

    Article  CAS  PubMed  Google Scholar 

  15. Xue YP, Zhang YQ, Wang W, Wang YJ, Liu ZQ, Zou SP, Zheng YG, Shen YC (2013) Highly enantioselective oxidation of alpha-hydroxyacids bearing a substituent with an aryl group: co-production of optically active alpha-hydroxyacids and alpha-ketoacids. Bioresour Technol 132:391–394

    Article  CAS  PubMed  Google Scholar 

  16. Xue YP, Yang YK, Lv SZ, Liu ZQ, Zheng YG (2016) High-throughput screening methods for nitrilases. Appl Microbiol Biotechnol 100:3421–3432

    Article  CAS  PubMed  Google Scholar 

  17. Xue YP, Wang W, Wang YJ, Liu ZQ, Zheng YG, Shen YC (2012) Isolation of enantioselective alpha-hydroxyacid dehydrogenases based on a high-throughput screening method. Bioprocess Biosyst Eng 35:1515–1522

    Article  CAS  PubMed  Google Scholar 

  18. Chen LY, Cheng CW, Liang JY (2015) Effect of esterification condensation on the Folin–Ciocalteu method for the quantitative measurement of total phenols. Food Chem 170:10–15

    Article  CAS  PubMed  Google Scholar 

  19. Nezhad MRH, Alimohammadi M, Tashkhourian J, Razavian SM (2008) Optical detection of phenolic compounds based on the surface plasmon resonance band of Au nanoparticles. Spectrochim Acta, Part A 71:199–203

    Article  CAS  Google Scholar 

  20. Rodríguez JV, Grubešić RJ, Kremer D, Kokot V (2016) Quality assessment of two spectrophotometric procedures for polyphenol determination and application in Moltkia petraea species. J Chin Chem Soc 63:677–687

    Article  CAS  Google Scholar 

  21. Chen H, Zhang Q, Wang X, Yang J, Wang Q (2011) Qualitative analysis and simultaneous quantification of phenolic compounds in the aerial parts of Salvia miltiorrhiza by HPLC-DAD and ESI/MSn. Phytochem Anal 22:247–257

    Article  CAS  PubMed  Google Scholar 

  22. Meenu M, Sharma A, Guha P, Mishra S (2016) A rapid high-performance liquid chromatography photodiode array detection method to determine phenolic compounds in mung bean (Vigna radiata L.). Int J Food Prop 19:2223–2237

    Article  CAS  Google Scholar 

  23. Bae IK, Ham HM, Jeong MH, Kim DH, Kim HJ (2015) Simultaneous determination of 15 phenolic compounds and caffeine in teas and mate using RP-HPLC/UV detection: method development and optimization of extraction process. Food Chem 172:469–475

    Article  CAS  PubMed  Google Scholar 

  24. Ding Y, Ayon A, García CD (2007) Electrochemical detection of phenolic compounds using cylindrical carbon-ink electrodes and microchip capillary electrophoresis. Anal Chim Acta 584:244–251

    Article  CAS  PubMed  Google Scholar 

  25. Scampicchio M, Wang J, Mannino S, Chatrathi MP (2005) Microchip capillary electrophoresis with amperometric detection for rapid separation and detection of phenolic acids. J Chromatogr A 1049:189–194

    Article  Google Scholar 

  26. Godoy-Caballero MP, Acedo-Valenzuela MI, Durán-Merás I, Galeano-Díaz T (2012) Development of a non-aqueous capillary electrophoresis method with UV–visible and fluorescence detection for phenolics compounds in olive oil. Anal Bioanal Chem 403:279–290

    Article  CAS  PubMed  Google Scholar 

  27. Lu L, Zhang L, Zhang X, Huan S, Shen G, Yu R (2010) A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds. Anal Chim Acta 665:146–151

    Article  CAS  PubMed  Google Scholar 

  28. Rodríguez-Delgado MM, Alemán-Nava GS, Rodríguez-Delgado JM, Dieck-Assad G, Martínez-Chapa SO, Barceló D, Parra R (2015) Laccase-based biosensors for detection of phenolic compounds. Trends Anal Chem 74:21–45

    Article  CAS  Google Scholar 

  29. Draghi PF, Fernandes JCB (2017) Label-free potentiometric biosensor based on solid-contact for determination of total phenols in honey and propolis. Talanta 164:413–417

    Article  CAS  PubMed  Google Scholar 

  30. Martín M, Salazar P, Campuzano S, Villalonga R, Pingarrón JM, González-Mora JL (2015) Amperometric magnetobiosensors using poly(dopamine)-modified Fe3O4 magnetic nanoparticles for the detection of phenolic compounds. Anal Methods 7:8801–8808

    Article  CAS  Google Scholar 

  31. Wu J, Rickert WS, Masters A (2012) An improved high performance liquid chromatography-fluorescence detection method for the analysis of major phenolic compounds in cigarette smoke and smokeless tobacco products. J Chromatogr A 1264:40–47

    Article  CAS  PubMed  Google Scholar 

  32. Pistonesi MF, Di NM, Centurión ME, Palomeque ME, Lista AG, Fernández Band BS (2006) Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta 69:1265–1268

    Article  CAS  PubMed  Google Scholar 

  33. Viñas P, López-Erroz C, Marı́n-Hernández JJ, Hernández-Córdoba M (2000) Determination of phenols in wines by liquid chromatography with photodiode array and fluorescence detection. J Chromatogr A 871:85–93

    Article  PubMed  Google Scholar 

  34. Hu H-F, Zhou H-Y, Wang M-X, Wang Y-S, Xue Y-P, Zheng Y-G (2019) A rapid throughput assay for screening (R)-2-(4-hydroxyphenoxy)propionic acid producing microbes. J Microbiol Methods 158:44–51

    Article  CAS  PubMed  Google Scholar 

  35. Tian X, Shen Y, Zhuang Y, Zhao W, Hang H, Chu J (2018) Kinetic analysis of sodium gluconate production by Aspergillus niger with different inlet oxygen concentrations. Bioprocess Biosyst Eng 41:1697–1706

    Article  CAS  PubMed  Google Scholar 

  36. Tentscher PR, Bourgin M, von Gunten U (2018) Ozonation of para-substituted phenolic compounds yields p-benzoquinones, other cyclic α, β-unsaturated ketones, and substituted catechols. Environ Sci Technol 52:4763–4773

    Article  CAS  PubMed  Google Scholar 

  37. Dai R, Liu J, Yu C, Sun R, Lan Y, Mao JD (2009) A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite). Chemosphere 76:536–541

    Article  CAS  PubMed  Google Scholar 

  38. Albrecht M, Schneider O, Schmidt A (2009) Redox active donor-substituted punicin derivatives. Org Biomol Chem 7:1445–1453

    Article  CAS  PubMed  Google Scholar 

  39. Gedawy A, Al-Salami H, Dass CR (2019) Development and validation of a new analytical HPLC method for simultaneous determination of the antidiabetic drugs, metformin and gliclazide. J Food Drug Anal 27:315–322  

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 31500031) and the Postgraduate Teaching Reform Project of Zhejiang University of Technology (No. 2018114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Ping Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, HY., Li, YZ., Jiang, R. et al. A high-throughput screening method for improved R-2-(4-hydroxyphenoxy)propionic acid biosynthesis. Bioprocess Biosyst Eng 42, 1573–1582 (2019). https://doi.org/10.1007/s00449-019-02154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02154-1

Keywords

Navigation