Skip to main content
Log in

Size dependence of carbon-encapsulated iron-based nanocatalysts for Fischer—Trposch synthesis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The conversion from syngas derived from non-petroleum recourses to liquid fuels and chemicals via Fischer—Tropsch synthesis (FTS) is regarded as an alternative and potential route. Developing catalyst with controllable particle size and clarifying size effect are of significance to promote the process. Herein, we engineered carbon-encapsulation structure to restrict particle growth but avoid strong metal—support interactions. The prepared carbon-encapsulated nanoparticles (Fe@C) showed a superior catalytic activity compared with conventional carbon-supported nanoparticles (Fe/C). By tuning particle size from 3.0 to 9.1 nm, a volcano-like trend of iron time yield (FTY) peaked at 2659 µmol·gFe−1·s−1 is obtained with an optimum particle size of 5.3 nm. According to temperature-programmed reduction and desorption results, a linear relationship between apparent turnover frequency and CO dissociation capacity was established. The enhanced CO dissociative adsorption along with weakened H2 activation on larger nanoparticles resulted in higher C5+ selectivity. This study provides a strategy to synthesize carbon supported metal catalysts with controllable particle size and insight into size effect on Fe-based catalytic FTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhai, P.; Li, Y. W.; Wang, M.; Liu, J. J.; Cao, Z.; Zhang, J.; Xu, Y.; Liu, X. W.; Li, Y. W.; Zhu, Q. J. et al. Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer—Tropsch route. Chem 2021, 7, 3027–3051.

    CAS  Google Scholar 

  2. Fang, W.; Wang, C. T.; Liu, Z. Q.; Wang, L.; Liu, L.; Li, H. J.; Xu, S. D.; Zheng, A. M.; Qin, X. D.; Liu, L. J. et al. Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration. Science 2022, 377, 406–410.

    CAS  Google Scholar 

  3. Bao, J.; Yang, G. H.; Yoneyama, Y.; Tsubaki, N. Significant advances in C1 catalysis: Highly efficient catalysts and catalytic reactions. ACS Catal. 2019, 9, 3026–3053.

    CAS  Google Scholar 

  4. Liu, J. H.; Song, Y. K.; Guo, X. M.; Song, C. S.; Guo, X. W. Recent advances in application of iron-based catalysts for COx hydrogenation to value-added hydrocarbons. Chin. J. Catal. 2022, 43, 731–754.

    CAS  Google Scholar 

  5. Galvis, H. M. T.; de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: A review. ACS Catal. 2013, 3, 2130–2149.

    Google Scholar 

  6. Chen, W. Y.; Ji, J.; Feng, X.; Duan, X. Z.; Qian, G.; Li, P.; Zhou, X. G.; Chen, D.; Yuan, W. K. Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2014, 136, 16736–16739.

    CAS  Google Scholar 

  7. Chen, W.; Lin, T. J.; Dai, Y. Y.; An, Y. L.; Yu, F.; Zhong, L. S.; Li, S. G.; Sun, Y. H. Recent advances in the investigation of nanoeffects of Fischer—Tropsch catalysts. Catal. Today 2018, 311, 8–22.

    CAS  Google Scholar 

  8. Luo, Q. X.; Guo, L. P.; Yao, S. Y.; Bao, J.; Liu, Z. T.; Liu, Z. W. Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer—Tropsch synthesis. J. Catal. 2019, 369, 143–156.

    CAS  Google Scholar 

  9. Van Santen, R. A. Complementary structure sensitive and insensitive catalytic relationships. Acc. Chem. Res. 2009, 40, 57–66.

    Google Scholar 

  10. Park, J. Y.; Lee, Y. J.; Khanna, P. K.; Jun, K. W.; Bae, J. W.; Kim, Y. H. Alumina-supported iron oxide nanoparticles as Fischer—Tropsch catalysts: Effect of particle size of iron oxide. J. Mol. Catal. A Chem. 2010, 323, 84–90.

    CAS  Google Scholar 

  11. Sun, Z. K.; Sun, B.; Qiao, M. H.; Wei, J.; Yue, Q.; Wang, C.; Deng, Y. H.; Kaliaguine, S.; Zhao, D. Y. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer—Tropsch synthesis. J. Am. Chem. Soc. 2012, 134, 17653–17660.

    CAS  Google Scholar 

  12. Iablokov, V.; Xiang, Y. Z.; Meffre, A.; Fazzini, P. F.; Chaudret, B.; Kruse, N. Size-dependent activity and selectivity of Fe/MCF-17 in the catalytic hydrogenation of carbon monoxide using Fe(0) nanoparticles as precursors. ACS Catal. 2016, 6, 2496–2500.

    CAS  Google Scholar 

  13. Yuan, Y.; Huang, S. Y.; Wang, H. Y.; Wang, Y. F.; Wang, J.; Lv, J.; Li, Z. H.; Ma, X. B. Monodisperse nano-Fe3O4 on α-Al2O3 catalysts for Fischer—Tropsch synthesis to lower olefins: Promoter and size effects. ChemCatChem 2017, 9, 3144–3152.

    CAS  Google Scholar 

  14. Zhao, Q.; Liang, H. T.; Huang, S. Y.; Han, X. X.; Wang, H. Y.; Wang, J.; Wang, Y.; Ma, X. B. Tunable Fe3O4 nanoparticles assembled porous microspheres as catalysts for Fischer—Tropsch synthesis to lower olefins. Catal. Today 2021, 368, 133–139.

    CAS  Google Scholar 

  15. Chen, Y. P.; Wei, J. T.; Duyar, M. S.; Ordomsky, V. V.; Khodakov, A. Y.; Liu, J. Carbon-based catalysts for Fischer—Tropsch synthesis. Chem. Soc. Rev. 2021, 50, 2337–2366.

    CAS  Google Scholar 

  16. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

    CAS  Google Scholar 

  17. Sun, M. R.; Chen, C. L.; Wu, M. H.; Zhou, D. N.; Sun, Z. Y.; Fan, J. L.; Chen, W. X.; Li, Y. J. Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms. Nano Res. 2022, 15, 1753–1778.

    CAS  Google Scholar 

  18. Cheng, Q. P.; Zhao, N.; Lyu, S. S.; Tian, Y.; Gao, F.; Dong, L.; Jiang, Z.; Zhang, J.; Tsubaki, N.; Li, X. G. Tuning interaction between cobalt catalysts and nitrogen dopants in carbon nanospheres to promote Fischer—Tropsch synthesis. Appl. Catal. B Environ. 2019, 248, 73–83.

    CAS  Google Scholar 

  19. Lu, J. Z.; Yang, L. J.; Xu, B. L.; Wu, Q.; Zhang, D.; Yuan, S. J.; Zhai, Y.; Wang, X. Z.; Fan, Y. N.; Hu, Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer—Tropsch catalysts for lower olefins. ACS Catal. 2014, 4, 613–621.

    CAS  Google Scholar 

  20. Wang, D.; Zhou, X. P.; Ji, J.; Duan, X. Z.; Qian, G.; Zhou, X. G.; Chen, D.; Yuan, W. K. Modified carbon nanotubes by KMnO4 supported iron Fischer—Tropsch catalyst for the direct conversion of syngas to lower olefins. J. Mater. Chem. A 2015, 3, 4560–4567.

    CAS  Google Scholar 

  21. Wang, D.; Ji, J.; Chen, B. X.; Chen, W. Y.; Qian, G.; Duan, X. Z.; Zhou, X. G.; Holmen, A.; Chen, D.; Walmsley, J. C. Novel Fe/MnK-CNTs nanocomposites as catalysts for direct production of lower olefins from syngas. AIChE J. 2017, 63, 154–161.

    Google Scholar 

  22. Chen, X. Q.; Deng, D. H.; Pan, X. L.; Hu, Y. F.; Bao, X. H. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins. Chem. Commun. 2015, 51, 217–220.

    CAS  Google Scholar 

  23. Guo, L. S.; Guo, Z. S.; Liang, J. M.; Yong, X. J.; Sun, S.; Zhang, W.; Sun, J.; Zhao, T. J.; Li, J.; Cui, Y. et al. Quick microwave assembling nitrogen-regulated graphene supported iron nanoparticles for Fischer—Tropsch synthesis. Chem. Eng. J. 2022, 429, 132063.

    CAS  Google Scholar 

  24. Wang, L. X.; Wang, L.; Meng, X. J.; Xiao, F. S. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv. Mater. 2019, 31, 1901905.

    CAS  Google Scholar 

  25. Zhang, J.; Wang, L.; Zhang, B. S.; Zhao, H. S.; Kolb, U.; Zhu, Y. H.; Liu, L. M.; Han, Y.; Wang, G. X.; Wang, C. T. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 2018, 1, 540–546.

    CAS  Google Scholar 

  26. Kang, S. W.; Kim, K.; Chun, D. H.; Yang, J. I.; Lee, H. T.; Jung, H.; Lim, J. T.; Jang, S.; Kim, C. S.; Lee, C. W. et al. High-performance Fe5C2@CMK-3 nanocatalyst for selective and high-yield production of gasoline-range hydrocarbons. J. Catal. 2017, 349, 66–74.

    CAS  Google Scholar 

  27. Gao, C. B.; Lyu, F. L.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 834–881.

    CAS  Google Scholar 

  28. Lee, J. H.; Lee, H. K.; Chun, D. H.; Choi, H.; Rhim, G. B.; Youn, M. H.; Jeong, H.; Kang, S. W.; Yang, J. I.; Jung, H. et al. Phase-controlled synthesis of thermally stable nitrogen-doped carbon supported iron catalysts for highly efficient Fischer—Tropsch synthesis. Nano Res. 2019, 12, 2568–2575.

    CAS  Google Scholar 

  29. Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

    CAS  Google Scholar 

  30. Ang, J. M.; Du, Y. H.; Tay, B. Y.; Zhao, C. Y.; Kong, J. H.; Stubbs, L. P.; Lu, X. H. One-pot synthesis of Fe(III)-polydopamine complex nanospheres: Morphological evolution, mechanism, and application of the carbonized hybrid nanospheres in catalysis and Zn-air battery. Langmuir 2016, 32, 9265–9275.

    CAS  Google Scholar 

  31. Oschatz, M.; Hofmann, J. P.; van Deelen, T. W.; Lamme, W. S.; Krans, N. A.; Hensen, E. J. M.; de Jong, K. P. Effects of the functionalization of the ordered mesoporous carbon support surface on iron catalysts for the Fischer—Tropsch synthesis of lower olefins. ChemCatChem 2017, 9, 620–628.

    CAS  Google Scholar 

  32. Zhang, Z. Q.; Chen, Y. G.; Zhou, L. Q.; Chen, C.; Han, Z.; Zhang, B. S.; Wu, Q.; Yang, L. J.; Du, L. Y.; Bu, Y. F. et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.

    Google Scholar 

  33. Zhao, Q.; Huang, S. Y.; Han, X. X.; Chen, J. J.; Wang, J. H.; Rykov, A.; Wang, Y.; Wang, M. Y.; Lv, J.; Ma, X. B. Highly active and controllable MOF-derived carbon nanosheets supported iron catalysts for Fischer—Tropsch synthesis. Carbon 2021, 173, 364–375.

    CAS  Google Scholar 

  34. Chernyak, S. A.; Suslova, E. V.; Ivanov, A. S.; Egorov, A. V.; Maslakov, K. I.; Savilov, S. V.; Lunin, V. V. Co catalysts supported on oxidized CNTs: Evolution of structure during preparation, reduction and catalytic test in Fischer—Tropsch synthesis. Appl. Catal. A Gen. 2016, 523, 221–229.

    CAS  Google Scholar 

  35. Galvis, H. M. T.; Bitter, J. H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A. L.; de Jong, K. P. Iron particle size effects for direct production of lower olefins from synthesis gas. J. Am. Chem. Soc. 2012, 134, 16207–16215.

    Google Scholar 

  36. Zhang, Z. P.; Zhang, J.; Wang, X.; Si, R.; Xu, J.; Han, Y. F. Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer—Tropsch to olefins. J. Catal. 2018, 365, 71–85.

    CAS  Google Scholar 

  37. Zeng, Z.; Li, Z. S.; Guan, T.; Guo, S. X.; Hu, Z. W.; Wang, J. H.; Rykov, A.; Lv, J.; Huang, S. Y.; Wang, Y. et al. CoFe alloy carbide catalysts for higher alcohols synthesis from syngas: Evolution of active sites and Na promoting effect. J. Catal. 2022, 405, 430–444.

    CAS  Google Scholar 

  38. Zhu, C.; Zhang, M. W.; Huang, C.; Zhong, L. S.; Fang, K. G. Carbon-encapsulated highly dispersed FeMn nanoparticles for Fischer—Tropsch synthesis to light olefins. New J. Chem. 2018, 42, 2413–2421.

    CAS  Google Scholar 

  39. Wang, C. T.; Fang, W.; Liu, Z. Q.; Wang, L.; Liao, Z. W.; Yang, Y. R.; Li, H. J.; Liu, L.; Zhou, H.; Qin, X. D. et al. Fischer—Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nat. Nanotechnol. 2022, 17, 714–720.

    CAS  Google Scholar 

  40. Lu, K.; Huo, C. F.; He, Y. R.; Guo, W. P.; Peng, Q.; Yang, Y.; Li, Y. W.; Wen, X. D. The structure—activity relationship of Fe nanoparticles in CO adsorption and dissociation by reactive molecular dynamics simulations. J. Catal. 2019, 374, 150–160.

    CAS  Google Scholar 

  41. Yao, R. W.; Wei, J.; Ge, Q. J.; Xu, J.; Han, Y.; Ma, Q. X.; Xu, H. Y.; Sun, J. Monometallic iron catalysts with synergistic Na and S for higher alcohols synthesis via CO2 hydrogenation. Appl. Catal. B Environ. 2021, 298, 120556.

    CAS  Google Scholar 

  42. Sharma, P.; Elder, T.; Groom, L. H.; Spivey, J. J. Effect of structural promoters on Fe-based Fischer—Tropsch synthesis of biomass derived syngas. Top. Catal. 2014, 57, 526–537.

    CAS  Google Scholar 

  43. Zhang, S. P.; Li, D. L.; Liu, Y.; Zhang, Y.; Wu, Q. Zirconium doped precipitated Fe-based catalyst for Fischer—Tropsch synthesis to light olefins at industrially relevant conditions. Catal. Lett. 2019, 149, 1486–1495.

    CAS  Google Scholar 

  44. Johnson, G. R.; Werner, S.; Bell, A. T. An investigation into the effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer—Tropsch synthesis: Evidence for enhanced CO adsorption and dissociation. ACS Catal. 2015, 5, 5888–5903.

    CAS  Google Scholar 

  45. Zhao, Z. A.; Lu, W.; Yang, R. O.; Zhu, H. J.; Dong, W. D.; Sun, F. F.; Jiang, Z.; Lyu, Y.; Liu, T.; Du, H. et al. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas. ACS Catal. 2018, 8, 228–241.

    CAS  Google Scholar 

  46. Xie, J. X.; Yang, J.; Dugulan, A. I.; Holmen, A.; Chen, D.; de Jong, K. P.; Louwerse, M. J. Size and promoter effects in supported iron Fischer—Tropsch catalysts: Insights from experiment and theory. ACS Catal. 2016, 6, 3147–3157.

    CAS  Google Scholar 

  47. Schulz, H. Selforganization in Fischer—Tropsch synthesis with iron-and cobalt catalysts. Catal. Today 2014, 228, 113–122.

    CAS  Google Scholar 

  48. Xie, J. X.; Paalanen, P. P.; van Deelen, T. W.; Weckhuysen, B. M.; Louwerse, M. J.; de Jong, K. P. Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas. Nat. Commun. 2019, 10, 167.

    Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (No. U20A20124) and the Program of Introducing Talents of Discipline to Universities (No. BP0618007) are gratefully acknowledged. The authors also thank the Haihe Laboratory of Sustainable Chemical Transformations for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shouying Huang or Xinbin Ma.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Lv, J., Huang, S. et al. Size dependence of carbon-encapsulated iron-based nanocatalysts for Fischer—Trposch synthesis. Nano Res. 16, 6270–6277 (2023). https://doi.org/10.1007/s12274-023-5417-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5417-4

Keywords

Navigation