Skip to main content
Log in

Anodization of titanium alloys for orthopedic applications

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In recent years, nanostructured oxide films on titanium alloy surfaces have gained significant interest due to their electrical, catalytic and biological properties. In literature, there is variety of different approaches to fabricate nanostructured oxide films. Among these methods, anodization technique, which allows fine-tuning of oxide film thickness, feature size, topography and chemistry, is one of the most popular approaches to fabricate nanostructured oxide films on titanium alloys, and it has been widely investigated for orthopedic applications. Briefly, anodization is the growth of a controlled oxide film on a metallic component attached to the anode of an electrochemical cell. This review provides an overview of the anodization technique to grow nanostructured oxide films on titanium and titanium alloys and summarizes the interactions between anodized titanium alloy surfaces with cells in terms of cellular adhesion, proliferation and differentiation. It will start with summarizing the mechanism of nanofeatured oxide fabrication on titanium alloys and then switch its focus on the latest findings for anodization of titanium alloys, including the use of fluoride free electrolytes and anodization of 3D titanium foams. The review will also highlight areas requiring further research to successfully translate anodized titanium alloys to clinics for orthopedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li B, Webster T. Orthopedic Biomaterials: Advances and Applications. Cham: Springer International Publishing, 2017, 31–32

    Book  Google Scholar 

  2. Kurtz S M, Ong K L, Schmier J, Mowat F, Saleh K, Dybvik E, Kärrholm J, Garellick G, Havelin L I, Furnes O, Malchau H, Lau E. Future clinical and economic impact of revision total hip and knee arthroplasty. Journal of Bone and Joint Surgery (American), 2007, 89(Suppl 3): 144–151

    Google Scholar 

  3. Etzioni D A, Liu J H, Maggard M A, Ko C Y. The aging population and its impact on the surgery workforce. Annals of Surgery, 2003, 238(2): 170–177

    PubMed  PubMed Central  Google Scholar 

  4. Ramiah R D, Ashmore A M, Whitley E, Bannister G C. Ten-year life expectancy after primary total hip replacement. Journal of Bone and Joint Surgery. British Volume, 2007, 89(10): 1299–1302

    Article  CAS  Google Scholar 

  5. Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants: A review. Clinical Cases in Mineral and Bone Metabolism, 2013, 10(1): 34–40

    PubMed  PubMed Central  Google Scholar 

  6. Etkin C D, Springer B D. The American joint replacement registry—the first 5 years. Arthroplasty Today, 2017, 3(2): 67–69

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 1999, 27(7): 629–637

    Article  CAS  Google Scholar 

  8. Long M, Rack H J. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 1998, 19(18): 1621–1639

    Article  CAS  PubMed  Google Scholar 

  9. Bütev E, Esen Z, Bor S. Characterization of Ti6Al7Nb alloy foams surface treated in aqueous NaOH and CaCl2 solutions. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60: 127–138

    Article  CAS  PubMed  Google Scholar 

  10. Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, Symes R, Tieppo M, Collins C, Cao A, et al. Metallic biomaterials: Current challenges and opportunities. Materials, 2017, 10(8): 884

    Article  CAS  PubMed Central  Google Scholar 

  11. Özcan M, Hämmerle C. Titanium as a reconstruction and implant material in dentistry: Advantages and pitfalls. Materials, 2012, 5(9): 1528–1545

    Article  CAS  PubMed Central  Google Scholar 

  12. Rogers S D, Howie D W, Graves S E, Pearcy M J, Haynes D R. In vitro human monocyte response to wear particles of titanium alloy containing vanadium or niobium. Journal of Bone and Joint Surgery, 1997, 79(2): 311–315

    Article  CAS  PubMed  Google Scholar 

  13. Popat K C, Leoni L, Grimes C A, Desai T A. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials, 2007, 28(21): 3188–3197

    Article  CAS  PubMed  Google Scholar 

  14. Palmer L C, Newcomb C J, Kaltz S R, Spoerke E D, Stupp S I. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews, 2008, 108(11): 4754–4783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liliensiek S J, Nealey P, Murphy C J. Characterization of endothelial basement membrane nanotopography in rhesus macaque as a guide for vessel tissue engineering. Tissue Engineering. Part A, 2009, 15(9): 2643–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rafieerad A, Zalnezhad E, Bushroa A, Hamouda A, Sarraf M, Nasiri-Tabrizi B. Self-organized TiO2 nanotube layer on Ti-6Al-7Nb for biomedical application. Surface and Coatings Technology, 2015, 265: 24–31

    Article  CAS  Google Scholar 

  17. Macak J M, Tsuchiya H, Taveira L, Ghicov A, Schmuki P. Selforganized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. Journal of Biomedical Materials Research Part A, 2005, 75(4): 928–933

    Article  CAS  PubMed  Google Scholar 

  18. Mahshid S, Dolati A, Goodarzi M, Askari M, Ghahramaninezhad A. Self-organized titanium oxide nanotubes prepared in phosphate electrolytes: Effect of voltage and fluorine concentration. ECS Transactions, 2010, 28(7): 67–74

    Article  CAS  Google Scholar 

  19. Akhlag A, Haq E U, Akhtar W, Arshad M, Ahmad Z. Synthesis and characterization of titania nanotubes by anodizing of titanium in fluoride containing electrolytes. Applied Nanoscience, 2017, 7(8): 701–710

    Article  CAS  Google Scholar 

  20. Indira K, Mudali U K, Nishimura T, Rajendran N. A review on TiO2 nanotubes: Influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. Journal of Bio-and Tribo-Corrosion, 2015, 1(28): 7–14

    Google Scholar 

  21. Macak J, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 2007, 11(1–2): 3–18

    Article  CAS  Google Scholar 

  22. Roy P, Berger S, Schmuki P. TiO2 nanotubes: Synthesis and applications. Angewandte Chemie International Edition, 2011, 50 (13): 2904–2939

    Article  CAS  PubMed  Google Scholar 

  23. Omidvar H, Goodarzi S, Seif A, Azadmehr A R. Influence of anodization parameters on the morphology of TiO2 nanotube arrays. Superlattices and Microstructures, 2011, 50(1): 26–39

    Article  CAS  Google Scholar 

  24. Escada A L, Nakazato R Z, Claro A P. Influence of anodization parameters in the TiO2 nanotubes formation on Ti-7.5Mo alloy surface for biomedical application. Materials Research, 2017, 20(5): 1282–1290

    Article  CAS  Google Scholar 

  25. Regonini D, Bowen C, Jaroenworaluck A, Stevens R. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports, 2013, 74 (12): 377–406

    Article  Google Scholar 

  26. Feng X, Macak J M, Schmuki P. Robust self-organization of oxide nanotubes over a wide pH range. Chemistry of Materials, 2007, 19 (7): 1534–1536

    Article  CAS  Google Scholar 

  27. Sreekantan S, Lockman Z, Hazan R, Tasbihi M, Tong L K, Mohamed A R. Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization. Journal of Alloys and Compounds, 2009, 485(1–2): 478–483

    Article  CAS  Google Scholar 

  28. Chen J, Lin J, Chen X. Self-assembled TiO2 nanotube arrays with Ushaped profile by controlling anodization temperature. Journal of Nanomaterials, 2010, 1: 38

    Google Scholar 

  29. Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E C. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 2001, 16(12): 3331–3334

    Article  CAS  Google Scholar 

  30. Kulkarni M, Mazare A, Schmuki P, Iglic A. Influence of anodization parameters on morphology of TiO2 nanostructured surfaces. Advanced Materials Letters, 2016, 7(1): 23–28

    Article  CAS  Google Scholar 

  31. Göttlicher M, Rohnke M, Kunz A, Thomas J, Henning R A, Leichtweiβ T, Janek J. Anodization of titanium in radio frequency oxygen discharge. Microstructure, kinetics and transport mechanism. Solid State Ionics, 2016, 290: 130–139

    Article  CAS  Google Scholar 

  32. Göttlicher M, Rohnke M, Helth A, Leichtweiβ T, Gemming T, Gebert A, Eckert J, Janek J. Controlled surface modification of Ti-40Nb implant alloy by electrochemically assisted inductively coupled RF plasma oxidation. Acta Biomaterialia, 2013, 9(11): 9201–9210

    Article  CAS  PubMed  Google Scholar 

  33. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 1999, 27(7): 629–637

    Article  CAS  Google Scholar 

  34. Beranek R, Hildebrand H, Schmuki P. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochemical and Solid-State Letters, 2003, 6(3): 12–14

    Article  CAS  Google Scholar 

  35. Cai Q, Paulose M, Varghese O K, Grimes C A. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. Journal of Materials Research, 2005, 20(01): 230–236

    Article  CAS  Google Scholar 

  36. Macak J M, Zlamal M, Krysa J, Schmuki P. Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small, 2007, 3(2): 300–304

    Article  CAS  PubMed  Google Scholar 

  37. Mazare A, Dilea M, Ionita D, Titorencu I, Trusca V, Vasile E. Changing bioperformance of TiO2 amorphous nanotubes as an effect of inducing crystallinity. Bioelectrochemistry, 2012, 87: 124–131

    Article  CAS  PubMed  Google Scholar 

  38. Kaczmarek A, Klekiel T, Krasicka-Cydzik E. Fluoride concentration effect on the anodic growth of self-aligned oxide nanotube array on Ti6Al7Nb alloy. Surface and Interface Analysis, 2010, 42(6–7): 510–514

    Article  CAS  Google Scholar 

  39. Park I S, Oh H J, Bae T S. Bioactivity and generation of anodized nanotubular TiO2 layer of Ti-6Al-4V alloy in glycerol solution. Thin Solid Films, 2013, 548: 292–298

    Article  CAS  Google Scholar 

  40. Mohan L, Anandan C, Rajendran N. Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of selforganized TiO2 nanotube arrays on Ti-6Al-7Nb for biomedical applications. Materials Science and Engineering C, 2015, 50: 394–401

    Article  CAS  PubMed  Google Scholar 

  41. Jha H, Hahn R, Schmuki P. Ultrafast oxide nanotube formation on TiNb, TiZr and TiTa alloys by rapid breakdown anodization. Electrochimica Acta, 2010, 55(28): 8883–8887

    Article  CAS  Google Scholar 

  42. Escada A L, Nakazato R Z, Claro A P. Influence of anodization parameters in the TiO2 nanotubes formation on Ti-7.5Mo alloy surface for biomedical application. Materials Research, 2017, 20(5): 1282–1290

    Article  CAS  Google Scholar 

  43. Chen P C, Hsieh S J, Chen C C, Zou J. The microstructure and capacitance characterizations of anodic titanium based alloy oxide nanotube. Journal of Nanomaterials, 2013, 2013: 157494

    Google Scholar 

  44. Kim W, Choe H, Brantley W A. Nanostructured surface changes of Ti-35Ta-xZr alloys with changes in anodization factors. Thin Solid Films, 2011, 519(15): 4663–4667

    Article  CAS  Google Scholar 

  45. Ossowska A, Sobieszczyk S, Supernak M, Zielinski A. Morphology and properties of nanotubular oxide layer on the Ti-13Zr-13Nb alloy. Surface and Coatings Technology, 2014, 258(15): 1239–1248

    Article  CAS  Google Scholar 

  46. Saito T, Furuta T, Hwang J H, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science, 2003, 300(5618): 464–467

    Article  CAS  PubMed  Google Scholar 

  47. Chiu Y H, Lai T H, Chen C Y, Hsieh P Y, Ozasa K, Niinomi M, Okada K, Chang T M, Matsushita N, Sone M, et al. Fully depleted Ti-Nb-Ta-Zr-O nanotubes: Interfacial charge dynamics and solar hydrogen production. ACS Applied Materials & Interfaces, 2018, 10(27): 22997–23008

    Article  CAS  Google Scholar 

  48. Richter C, Wu Z, Panaitescu E, Willey R, Menon L. Ultra-highaspect-ratio titania nanotubes. Advanced Materials, 2007, 19(7): 946–948

    Article  CAS  Google Scholar 

  49. Cheong Y L, Yam F K, Ng S W, Hassan Z, Ng S S, Low I M. Fabrication of titanium dioxide nanotubes in fluoride-free electrolyte via rapid breakdown anodization. Journal of Porous Materials, 2015, 22(6): 1437–1444

    Article  CAS  Google Scholar 

  50. Allam N K, Shankar K, Grimes C A. Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. Journal of Materials Chemistry, 2008, 18(20): 2341–2348

    Article  CAS  Google Scholar 

  51. Kim S, Seong M, Choi J. Rapid breakdown anodization for the preparation of titania nanotubes in halogen-free acids. Journal of the Electrochemical Society, 2015, 162(6): 205–208

    Article  CAS  Google Scholar 

  52. Bi Z, ParanthamanMP, Menchhofer P A, Dehoff R R, Bridges C A, Chi M, Dai S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. Journal of Power Sources, 2013, 222: 461–466

    Article  CAS  Google Scholar 

  53. Kang J S, Choi H, Kim J, Park H, Kim J Y, Choi JW, Yu S H, Lee K J, Kang Y S, Park S H, et al. Solar cells: Multidimensional anodized titanium foam photoelectrode for efficient utilization of photons in mesoscopic solar cells. Small, 2017, 13(34): 1–7

    Google Scholar 

  54. Schakenraad J M, Busscher H J, Wildevuur C R, Arends J. The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins. Journal of Biomedical Materials Research, 1986, 20(6): 773–784

    Article  CAS  PubMed  Google Scholar 

  55. Puckett S D, Taylor E, Raimondo T, Webster T J. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 2010, 31(4): 706–713

    Article  CAS  PubMed  Google Scholar 

  56. Wang L N, Jin M, Zheng Y, Guan Y, Lu X, Luo J L. Nanotubular surface modification of metallic implants via electrochemical anodization technique. International Journal of Nanomedicine, 2014, 9(1): 4421–4435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Webster T J, Ergun C, Doremus R H, Siegel R W, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 2000, 21(17): 1803–1810

    Article  CAS  PubMed  Google Scholar 

  58. Webster T J, Ejiofor J U. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials, 2004, 25(19): 4731–4739

    Article  CAS  PubMed  Google Scholar 

  59. Raimondo T, Puckett S, Webster T J. Greater osteoblast and endothelial cell adhesion on nanostructured polyethylene and titanium. International Journal of Nanomedicine, 2010, 5(5): 647–652

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ji W, Han P, Zhao C, Jiang Y, Zhang X. Increased osteoblast adhesion on nanophase Ti6Al4V. Science Bulletin, 2008, 53(11): 1757–1762

    Article  CAS  Google Scholar 

  61. Brammer K S, Oh S, Cobb C J, Bjursten L M, van der Heyde H, Jin S. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomaterialia, 2009, 5(8): 3215–3223

    Article  CAS  PubMed  Google Scholar 

  62. Ross A P, Webster T J. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions. International Journal of Nanomedicine, 2013, 8(1): 109–117

    PubMed  PubMed Central  Google Scholar 

  63. Yao C, Slamovich E B, Webster T J. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. Journal of Biomedical Materials Research Part A, 2008, 85A(1): 157–166

    Article  CAS  Google Scholar 

  64. Roy P, Berger S, Schmuki P. TiO2 nanotubes: Synthesis and applications. Angewandte Chemie International Edition, 2011, 50 (13): 2904–2939

    Article  CAS  PubMed  Google Scholar 

  65. Tan A, Pingguan-Murphy B, Ahmad R, Akbar S. Review of titania nanotubes: Fabrication and cellular response. Ceramics International, 2012, 38(6): 4421–4435

    Article  CAS  Google Scholar 

  66. Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Letters, 2007, 7(6): 1686–1691

    Article  CAS  PubMed  Google Scholar 

  67. Ercan B, Kummer K M, Tarquinio K M, Webster T J. Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. Acta Biomaterialia, 2011, 7(7): 3003–3012

    Article  CAS  PubMed  Google Scholar 

  68. Brammer K S, Oh S, Cobb C J, Bjursten L M, van der Heyde H, Jin S. Improved bone-forming functionality on diameter-controlled TiO (2) nanotube surface. Acta Biomaterialia, 2009, 5(8): 3215–3223

    Article  CAS  PubMed  Google Scholar 

  69. Brammer K S, Oh S, Gallagher J O, Jin S. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Letters, 2008, 8 (3): 786–793

    Article  CAS  PubMed  Google Scholar 

  70. Yu W Q, Zhang Y L, Jiang X Q, Zhang F Q. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Oral Diseases, 2010, 16(7): 624–630

    Article  CAS  PubMed  Google Scholar 

  71. Oh S, Brammer K S, Li Y S, Teng D, Engler A J, Chien S, Jin S. Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(7): 2130–2135

    Article  PubMed  PubMed Central  Google Scholar 

  72. Malec K, Góralska J, Hubalewska-Mazgaj M, Glowacz P, Jarosz M, Brzewski P, Sulka G D, Jaskula M, Wybranska I. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells. International Journal of Nanomedicine, 2016, 11: 5349–5360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li G, Zhao Q, Tang H, Li G, Chi Y. Fabrication, characterization and biocompatibility of TiO2 nanotubes via anodization of Ti6Al7Nb. Composite Interfaces, 2016, 23(3): 223–230

    Article  CAS  Google Scholar 

  74. Filova E, Fojt J, Kryslova M, Moravec H, Joska L, Bacakova L. The diameter of nanotubes formed on Ti-6Al-4V alloy controls the adhesion and differentiation of Saos-2 cells. International Journal of Nanomedicine, 2015, 10(1): 7145–7163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sul Y T. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants. International Journal of Nanomedicine, 2010, 5(5): 87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bjursten L M, Rasmusson L, Oh S, Smith G C, Brammer K S, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. Journal of Biomedical Materials Research Part A, 2010, 92(3): 1218–1224

    PubMed  Google Scholar 

  77. Salou L, Hoornaert A, Louarn G, Layrolle P. Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomaterialia, 2015, 11: 494–502

    Article  CAS  PubMed  Google Scholar 

  78. Puckett S. Select nanofabricated titanium materials for enhancing bone and skin growth of intraosseous transcutaneous amputation prostheses. Dissertation for the Doctoral Degree, Rhode Island: Brown University, 2011, 286–300

    Google Scholar 

  79. Wang N, Li H, Lü W, Li J, Wang J, Zhang Z, Liu Y. Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials, 2011, 32 (29): 6900–6911

    Article  CAS  PubMed  Google Scholar 

  80. Puckett S D, Taylor E, Raimondo T, Webster T J. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 2010, 31(4): 706–713

    Article  CAS  PubMed  Google Scholar 

  81. Del Pozo J L, Patel R. Clinical practice. Infection associated with prosthetic joints. New England Journal of Medicine, 2009, 361(8): 787–794

    PubMed  Google Scholar 

  82. Colon G, Ward B C,Webster T J. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. Journal of Biomedical Materials Research Part A, 2006, 78A(3): 595–604

    Article  CAS  Google Scholar 

  83. Peremarch C P, Tanoira R P, Arenas M A, Matykina E, Conde A, Damborenea J J, Esteban J. Bacterial adherence to anodized titanium alloy. Journal of Physics: Conference Series, 2010, 252(1): 1–8

    Google Scholar 

  84. Zhao C, Feng B, Li Y, Tan J, Lu X, Weng J. Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light. Applied Surface Science, 2013, 280: 8–14

    Article  CAS  Google Scholar 

  85. Wang T, Weng Z, Liu X, Yeung K W K, Pan H, Wu S. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants. Bioactive Materials, 2017, 2(1): 44–50

    Article  PubMed  PubMed Central  Google Scholar 

  86. Crawford G A, Chawla N, Das K, Bose S, Bandyopadhyay A. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomaterialia, 2007, 3(3): 359–367

    Article  CAS  PubMed  Google Scholar 

  87. Zhao M, Li J, Li Y, Wang J, Zuo Y, Jiang J, Wang H. Gradient control of the adhesive force between Ti/TiO2 nanotubular arrays fabricated by anodization. Scientific Reports, 2014, 4(1): 7178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) Grant Number 117M187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Batur Ercan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İzmir, M., Ercan, B. Anodization of titanium alloys for orthopedic applications. Front. Chem. Sci. Eng. 13, 28–45 (2019). https://doi.org/10.1007/s11705-018-1759-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1759-y

Keywords

Navigation