Skip to main content
Log in

Fabrication of titanium dioxide nanotubes in fluoride-free electrolyte via rapid breakdown anodization

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This paper presents the study on the growth of bundled titanium dioxide (TiO2) nanotubes via rapid breakdown anodization method by using chloride-based electrolyte. The effects of different ratios of deionized water (DI) to ethylene glycol (EG) on the morphological, structural and photoelectrochemical properties of the TiO2 nanotubes generated were investigated. Different ratios of DI:EG showed significant changes on the diameter of nanotube bundles. Besides that, X-ray diffraction measurements revealed that anatase phase of titanium dioxide appeared within the thermally treated samples. Scherrer method was applied to calculate the mean crystallite size of the crystal growth in this study. The photoelectrochemical properties of TiO2 nanotube bundles were characterized by using three-electrode photoelectrochemical cell and showed good photocurrent response and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Jing, L. Guo, L. Zhao, X. Zhang, H. Liu, M. Li, S. Shen, G. Liu, X. Hu, X. Zhang, K. Zhang, L. Ma, P. Guo, Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int. J. Hydrog. Energ. 35, 7087–7097 (2010)

    Article  CAS  Google Scholar 

  2. S.K.P. Dhungel, J.G. Park, Optimization of paste formulation for TiO2 nanoparticles with wide range of size distribution for its application in dye sensitized solar cells. Renew. Energ. 35, 2776–2780 (2010)

    Article  CAS  Google Scholar 

  3. W. Jarernboon, S. Pimanpang, S. Maensiri, E. Swatsitang, V. Amornkitbamrung, Optimization of titanium dioxide film prepared by electrophoretic deposition for dye-sensitized solar cell application. Thin Solid Films 517, 4663–4667 (2009)

    Article  CAS  Google Scholar 

  4. T. Hubert, L. Boon-Brett, G. Black, U. Banach, Hydrogen sensors—a review. Sensor Actuat. B Chem. 157, 329–352 (2011)

    Article  Google Scholar 

  5. E. Sennik, Z. Çolak, N. KılınÇ, Z.Z. Özturk, Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor. Int. J. Hydrog. Energ. 35, 4420–4427 (2010)

    Article  CAS  Google Scholar 

  6. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  7. T. Kawai, T. Sakata, Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 286, 474–476 (1980)

    Article  CAS  Google Scholar 

  8. C. Xu, Y. Song, L.F. Lu, C.W. Cheng, D.F. Liu, X.H. Fang, X.Y. Chen, X.F. Zhu, D.D. Li, Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance. Nanoscale Res. Lett. 8, 391 (2013)

    Article  Google Scholar 

  9. M. Paulose, G.K. Mor, O.K. Varghese, K. Shankar, C.A. Grimes, Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J. Photoch. Photobio. A 178, 8–15 (2006)

    Article  CAS  Google Scholar 

  10. N.K. Allam, K. Shankarb, C.A. Grimes, Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes. J. Mater. Chem. 18, 2341–2348 (2008)

    Article  CAS  Google Scholar 

  11. I.S. Cho, Z.B. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X.L. Zheng, Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 11, 4978–4984 (2011)

    Article  CAS  Google Scholar 

  12. A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small 5, 104–111 (2009). doi:10.1002/smll.200800902

    Article  CAS  Google Scholar 

  13. G.M. Wang, H.Y. Wang, Y.C. Ling, Y.C. Tang, X.Y. Yang, R.C. Fitzmorris, C.C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011)

    Article  CAS  Google Scholar 

  14. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 8, 2891–2959 (2007)

    Article  Google Scholar 

  15. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)

    Article  CAS  Google Scholar 

  16. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrog. Energy 31, 1999–2017 (2006)

    Article  CAS  Google Scholar 

  17. I.S. Cho, C.H. Lee, Y.Z. Feng, M. Logar, P.M. Rao, L. Cai, D.R. Kim, R. Sinclair, X.L. Zheng, Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. Nat. Commun. 4, 1723 (2013)

    Article  Google Scholar 

  18. C.Z. Wang, Z. Chen, H.B. Jin, C.B. Cao, J.B. Li, Z.T. Mi, Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J. Mater. Chem. A 2, 17820–17827 (2014)

    Article  CAS  Google Scholar 

  19. R. Krol, M. Grätzel (eds.), Photoelectrochemical Hydrogen Production, Electronic Materials: Science & Technology, vol. 102 (Springer, London, 2012)

    Google Scholar 

  20. J.Y. Bae, T.K. Yun, K.S. Ahn, J.H. Kim, Visible-photoresponsive nitrogen-doped mesoporous TiO2 films for photoelectrochemical cells. Bull. Korean Chem. Soc. 31, 925–928 (2010)

    Article  CAS  Google Scholar 

  21. S.W. Ng, F.K. Yam, K.P. Beh, S.S. Tneh, Z. Hassan, The effect of growth parameters and mechanism of titania nanotubes prepared by anodic process. Optoelectron. Adv. Mat. 5, 258–262 (2011)

    CAS  Google Scholar 

  22. J.M. Macak, H. Tsuchiya, P. Schmuki, Smooth Anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 44, 7463–7465 (2005)

    Article  CAS  Google Scholar 

  23. S. Sreekantan, K.A. Saharudin, C.W. Lai, Formation of TiO2 nanotubes via anodization and potential applications for photocatalysts, biomedical materials, and photoelectrochemical cell. Mat. Sci. Eng. 21, 012002 (2011)

    Google Scholar 

  24. C. Su, B.Y. Hong, C.M. Tseng, Sol–gel preparation and photocatalysis of titanium dioxide. Catal. Today 96, 119–126 (2004)

    Article  CAS  Google Scholar 

  25. K. Chen, J. Li, W. Wang, Y. Zhang, X. Wang, H. Su, Effects of surfactants on microstructure and photocatalytic activity of TiO2 nanoparticles prepared by the hydrothermal method. Mat. Sci. Semicon. Proc. 15, 20–26 (2012)

    Article  CAS  Google Scholar 

  26. P. Babelon, A.S. Dequiedt, H. Mostefa-sba, S. Bourgrois, P. Sibillot, M. Sacilotti, SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films 322, 63–67 (1998)

    Article  CAS  Google Scholar 

  27. C. Richter, Z. Wu, E. Panaitescu, R.J. Willey, L. Menon, Ultra-high-aspect-ratio titania nanotubes. Adv. Mater. 19, 946–948 (2007)

    Article  CAS  Google Scholar 

  28. R. Hahn, H. Lee, D. Kim, S. Narayanan, S. Berger, P. Schmuki, Self-organized anodic TiO2-nanotubes in fluoride free electrolytes. ECS Trans. 16, 369–373 (2008)

    Article  CAS  Google Scholar 

  29. S.W. Ng, F.K. Yam, K.P. Beh, Z. Hassan, Titanium dioxide nanotubes in chloride based electrolyte: an alternative to fluoride based electrolyte. Sains Malays. 43, 947–951 (2014)

    CAS  Google Scholar 

  30. C. Richter, E. Panaitescu, R. Willey, L. Menon, Titania nanotubes prepared by anodization in fluorine-free acids. J. Mater. Res. 22, 1624–1631 (2007)

    Article  CAS  Google Scholar 

  31. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. 11, 3–18 (2007)

    Article  CAS  Google Scholar 

  32. L. Zang, Energy Efficiency and Renewable Energy Through Nanotechnology (Springer, Berlin, 2011)

    Book  Google Scholar 

  33. P. Haines, Principles of Thermal Analysis and Calorimetry (Royal Society of Chemistry, 2002)

  34. J. Cazes, Analytical Instrumentation Handbook, 3rd edn. (CRC Press, Boca Raton, 2004). 10: 0824753488

    Book  Google Scholar 

  35. H. Wang, H.Y. Li, J.S. Wang, J.S. Wu, M. Liu, Influence of applied voltage on anodized TiO2 nanotube arrays and their performance on dye sensitized solar cells. J. Nanosci. Nanotech. 13, 4183–4188 (2013)

    Article  CAS  Google Scholar 

  36. W.Y. Wang, B.R. Chen, Characterization and photocatalytic activity of TiO2 nanotube films prepared by anodization. Int. J. Photoenergy 2013, 348171 (2013)

    Google Scholar 

  37. C.A. Grimes, G.K. Mor, TiO 2 Nanotube Arrays: Synthesis, Properties, and Applications (Springer, London, 2009)

    Book  Google Scholar 

  38. Y. Choi, T. Umebayashi, S. Yamamoto, S. Tanaka, Fabrication of TiO2 photocatalysts by oxidative annealing of TiC. J. Mater. Sci. Lett. 22, 1209–1211 (2003)

    Article  CAS  Google Scholar 

  39. P. Scherrer, Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels rontgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften Gottingen, Mathematisch-Physikalische Klasse 2, 98–100 (1918)

    Google Scholar 

  40. Y.L. Cheong, F.K. Yam, I.K. Chin, Z. Hassan, X-ray analysis of nanoporous TiO2 synthesized by electrochemical anodization. Superlattice Microst. 64, 37–43 (2013)

    Article  CAS  Google Scholar 

  41. Y.L. Cheong, F.K. Yam, Y.W. Ooi, Z. Hassan, Room-temperature synthesis of nanocrystalline titanium dioxide via electrochemical anodization. Mat. Sci. Semicon. Proc. 26, 130–136 (2014)

    Article  CAS  Google Scholar 

  42. O.K. Varghese, D. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156–165 (2003)

    Article  CAS  Google Scholar 

  43. K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett. 7, 3739–3746 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Universiti Sains Malaysia (USM) and Exploratory Research Grant Scheme (ERGS: 203/PFIZIK/6730096) for all the technical and financial supports in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. Cheong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheong, Y.L., Yam, F.K., Ng, S.W. et al. Fabrication of titanium dioxide nanotubes in fluoride-free electrolyte via rapid breakdown anodization. J Porous Mater 22, 1437–1444 (2015). https://doi.org/10.1007/s10934-015-0024-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0024-8

Keywords

Navigation