Skip to main content
Log in

Effect of adding a smart potassium ion-responsive copolymer into polysulfone support membrane on the performance of thin-film composite nanofiltration membrane

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Thin-film composite (TFC) nanofiltration (NF) membranes were fabricated via the interfacial polymerization of piperazine (PIP) and 1,3,5-benzenetricarbonyl trichloride on polysulfone (PSf) support membranes blended with K+-responsive poly(N-isopropylacryamideco-acryloylamidobenzo-15-crown-5) (P(NIPAM-co-AAB15C5)). Membranes were characterized by attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscope, scanning electron microscope, contact angle, and filtration tests. The results showed that: (1) Under K+-free conditions, the blended P(NIPAM-co-AAB15C5)/PSf supports had porous and hydrophilic surfaces, thereby producing NF membranes with smooth surfaces and low MgSO4 rejections; (2) With K+ in the PIP solution, the surface roughness and water permeability of the resultant NF membrane were increased due to the K+-induced transition of low-content P(NIPAM-co-AAB15C5) from hydrophilic to hydrophobic; (3) After a curing treatment at 95 °C, the improved NF membrane achieved an even higher pure water permeability of 10.97 L⋅m-2⋅h-1⋅bar-1 under 200 psi. Overall, this study provides a novel method to improve the performance of NF membranes and helps understand the influence of supports on TFC membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pereira V J, Galinha J, Barreto Crespo M T, Matos C T, Crespo J G. Integration of nanofiltration, UV photolysis, and advanced oxidation processes for the removal of hormones from surface water sources. Separation and Purification Technology, 2012, 95: 89–96

    Article  CAS  Google Scholar 

  2. Sentana I, Puche R D S, Sentana E, Prats D. Reduction of chlorination byproducts in surface water using ceramic nanofiltration membranes. Desalination, 2011, 277(1–3): 147–155

    Article  CAS  Google Scholar 

  3. Sen M, Manna A, Pal P. Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system. Journal of Membrane Science, 2010, 354(1–2): 108–113

    Article  CAS  Google Scholar 

  4. Schaep J, Van der Bruggen B, Uytterhoeven S, Croux R, Vandecasteele C, Wilms D, Van Houtte E, Vanlerberghe F. Removal of hardness from groundwater by nanofiltration. Desalination, 1998, 119(1–3): 295–301

    Article  CAS  Google Scholar 

  5. Zou X, Li J. On the fouling mechanism of polysulfone ultrafiltration membrane in the treatment of coal gasification wastewater. Frontiers of Chemical Science and Engineering, 2016, 10(4): 490–498

    Article  CAS  Google Scholar 

  6. Suresh K, Pugazhenthi G, Uppaluri R. Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane. Frontiers of Chemical Science and Engineering, 2017, 11(2): 266–279

    Article  CAS  Google Scholar 

  7. Ang W L, Mohammad A W, Hilal N, Leo C P. A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination, 2015, 363: 2–18

    Article  CAS  Google Scholar 

  8. Lee K P, Arnot T C, Mattia D. A review of reverse osmosis membrane materials for desalination-development to date and future potential. Journal of Membrane Science, 2011, 370(1–2): 1–22

    Article  CAS  Google Scholar 

  9. Mohammad A W, Teow Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L, Hilal N. Nanofiltration membranes review: Recent advances and future prospects. Desalination, 2015, 356: 226–254

    Article  CAS  Google Scholar 

  10. Hilal N, Al-Zoubi H, Darwish N A, Mohammad AW, Abu Arabi M. A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy. Desalination, 2004, 170(3): 281–308

    Article  CAS  Google Scholar 

  11. Lau W J, Ismail A F, Misdan N, Kassim M A. A recent progress in thin film composite membrane: A review. Desalination, 2012, 287: 190–199

    Article  CAS  Google Scholar 

  12. Fathizadeh M, Aroujalian A, Raisi A. Effect of lag time in interfacial polymerization on polyamide composite membrane with different hydrophilic sub layers. Desalination, 2012, 284: 32–41

    Article  CAS  Google Scholar 

  13. Ghosh A K, Hoek E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. Journal of Membrane Science, 2009, 336(1–2): 140–148

    Article  CAS  Google Scholar 

  14. Xie W, Geise G M, Freeman B D, Lee H S, Byun G, McGrath J E. Polyamide interfacial composite membranes prepared from mphenylene diamine, trimesoyl chloride and a new disulfonated diamine. Journal of Membrane Science, 2012, 403–404: 152–161

    Article  CAS  Google Scholar 

  15. Xu X X, Zhou C L, Zeng B R, Xia H P, Lan W G, He X M. Structure and properties of polyamidoamine/polyacrylonitrile composite nanofiltration membrane prepared by interfacial polymerization. Separation and Purification Technology, 2012, 96: 229–236

    Article  CAS  Google Scholar 

  16. Tiraferri A, Yip N Y, Phillip W A, Schiffman J D, Elimelech M. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. Journal of Membrane Science, 2011, 367(1–2): 340–352

    Article  CAS  Google Scholar 

  17. Tang C Y, Kwon Y N, Leckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination, 2009, 242(1–3): 149–167

    Article  CAS  Google Scholar 

  18. Lv Z, Hu J, Zheng J, Zhang X, Wang L. Antifouling and high flux sulfonated polyamide thin-film composite membrane for nanofiltration. Industrial & Engineering Chemistry Research, 2016, 55(16): 4726–4733

    Article  CAS  Google Scholar 

  19. Nan Q, Li P, Cao B. Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination. Applied Surface Science, 2016, 387: 521-528

    Article  CAS  Google Scholar 

  20. Wahab Mohammad A, Hilal N, Nizam Abu Seman M. A study on producing composite nanofiltration membranes with optimized properties. Desalination, 2003, 158(1–3): 73–78

    Article  Google Scholar 

  21. Zhang Y, Zhang H, Li Y, Mao H, Yang G, Wang J. Tuning the performance of composite membranes by optimizing PDMS content and cross-linking time for solvent resistant nanofiltration. Industrial & Engineering Chemistry Research, 2015, 54(23): 6175–6186

    Article  CAS  Google Scholar 

  22. Sun S P, Chung T S, Lu K J, Chan S Y. Enhancement of flux and solvent stability of Matrimid® thin-film composite membranes for organic solvent nanofiltration. AIChE Journal, 2014, 60(10): 3623–3633

    Article  CAS  Google Scholar 

  23. An Q, Li F, Ji Y, Chen H. Influence of polyvinyl alcohol on the surface morphology, separation and anti-fouling performance of the composite polyamide nanofiltration membranes. Journal of Membrane Science, 2011, 367(1–2): 158–165

    Article  CAS  Google Scholar 

  24. Kim E S, Yu Q, Deng B. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling. Applied Surface Science, 2011, 257(23): 9863–9871

    Article  CAS  Google Scholar 

  25. Ghosh A K, Jeong B H, Huang X, Hoek E M V. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. Journal of Membrane Science, 2008, 311(1–2): 34–45

    Article  CAS  Google Scholar 

  26. Singh P S, Joshi S V, Trivedi J J, Devmurari C V, Rao A P, Ghosh P K. Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions. Journal of Membrane Science, 2006, 278(1–2): 19–25

    Article  CAS  Google Scholar 

  27. Li X, Wang K Y, Helmer B, Chung T S. Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes. Industrial & Engineering Chemistry Research, 2012, 51(30): 10039–10050

    Article  CAS  Google Scholar 

  28. Wang K Y, Chung T S, Amy G. Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization. AIChE Journal, 2012, 58(3): 770–781

    Article  CAS  Google Scholar 

  29. Emadzadeh D, Lau W J, Matsuura T, Rahbari-Sisakht M, Ismail A F. A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination. Chemical Engineering Journal, 2014, 237: 70–80

    Article  CAS  Google Scholar 

  30. Zhang Q, Zhang Z, Dai L, Wang H, Li S, Zhang S. Novel insights into the interplay between support and active layer in the thin film composite polyamide membranes. Journal of Membrane Science, 2017, 537: 372–383

    Article  CAS  Google Scholar 

  31. Zhang X, Lv Y, Yang H C, Du Y, Xu Z K. Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance. ACS Applied Materials & Interfaces, 2016, 8(47): 32512–32519

    Article  CAS  Google Scholar 

  32. Wu M B, Lv Y, Yang H C, Liu L F, Zhang X, Xu Z K. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances. Journal of Membrane Science, 2016, 515: 238–244

    Article  CAS  Google Scholar 

  33. Chu L Y, Niitsuma T, Yamaguchi T, Nakao S, Nakao S. Thermoresponsive transport through porous membranes with grafted PNIPAM gates. AIChE Journal, 2003, 49(4): 896–909

    Article  CAS  Google Scholar 

  34. Zheng B, Wang F, Dong S, Huang F. Supramolecular polymers constructed by crown ether-based molecular recognition. Chemical Society Reviews, 2012, 41(5): 1621–1636

    Article  CAS  PubMed  Google Scholar 

  35. Liu Z, Luo F, Ju X J, Xie R, Luo T, Sun Y M, Chu L Y. Positively K+-responsive membranes with functional gates driven by hostguest molecular recognition. Advanced Functional Materials, 2012, 22(22): 4742–4750

    Article  CAS  Google Scholar 

  36. Liu Z, Liu L, Ju X J, Xie R, Zhang B, Chu L Y K. K+-recognition capsules with squirting release mechanisms. Chemical Communications, 2011, 47(45): 12283–12285

    Article  CAS  PubMed  Google Scholar 

  37. Mi P, Chu L Y, Ju X J, Niu C H. A smart polymer with ion-induced negative shift of the lower critical solution temperature for phase transition. Macromolecular Rapid Communications, 2008, 29(1): 27–32

    Article  CAS  Google Scholar 

  38. Jiang M Y, Ju X J, Fang L, Liu Z, Yu H R, Jiang L,Wang W, Xie R, Chen Q, Chu L Y. A novel, smart microsphere with K+-induced shrinking and aggregating properties based on a responsive host-guest system. ACS Applied Materials & Interfaces, 2014, 6(21): 19405–19415

    Article  CAS  Google Scholar 

  39. Mi P, Ju X J, Xie R, Wu H G, Ma J, Chu L Y. A novel stimuli-responsive hydrogel for K+-induced controlled-release. Polymer, 2010, 51(7): 1648–1653

    Article  CAS  Google Scholar 

  40. Liu Z, Wang W, Xie R, Ju X J, Chu L Y. Stimuli-responsive smart gating membranes. Chemical Society Reviews, 2016, 45(3): 460–475

    Article  CAS  PubMed  Google Scholar 

  41. Liu Z, Ju X J, Huang Y H, Xie R, Wang W, Lee K R, Chu L Y. Diffusional permeability characteristics of positively K+-responsive membranes caused by spontaneously changing membrane pore size and surface wettability. Journal of Membrane Science, 2016, 497: 328–338

    Article  CAS  Google Scholar 

  42. Liu B, Chen C, Zhao P, Li T, Liu C, Wang Q, Chen Y, Crittenden J. Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate. Frontiers of Chemical Science and Engineering, 2016, 10(4): 562–574

    Article  CAS  Google Scholar 

  43. Cadotte J E. US Patent, 4277344, 1981-07-07

  44. Liu B, Wang S, Zhao P, Liang H, Zhang W, Crittenden J. High-performance polyamide thin-film composite nanofiltration membrane: Role of thermal treatment. Applied Surface Science, 2018, 435: 415–423

    Article  CAS  Google Scholar 

  45. Puliyalil H, Slobodian P, Sedlacik M, Benlikaya R, Riha P, Ostrikov K, Cvelbar U. Plasma-enabled sensing of urea and related amides on polyaniline. Frontiers of Chemical Science and Engineering, 2016, 10(2): 265–272

    Article  CAS  Google Scholar 

  46. Young T H, Chen L W. A two step mechanism of diffusion-controlled ethylene vinyl alcohol membrane formation. Journal of Membrane Science, 1991, 57(1): 69–81

    Article  CAS  Google Scholar 

  47. Young T H, Chen L W. A diffusion-controlled model for wetcasting membrane formation. Journal of Membrane Science, 1991, 59(2): 169–181

    Article  CAS  Google Scholar 

  48. Du J R, Peldszus S, Huck P M, Feng X. Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment. Water Research, 2009, 43(18): 4559–4568

    Article  CAS  PubMed  Google Scholar 

  49. Huang S H, Hsu C J, Liaw D J, Hu C C, Lee K R, Lai J Y. Effect of chemical structures of amines on physicochemical properties of active layers and dehydration of isopropanol through interfacially polymerized thin-film composite membranes. Journal of Membrane Science, 2008, 307(1): 73–81

    Article  CAS  Google Scholar 

  50. Klaysom C, Hermans S, Gahlaut A, Van Craenenbroeck S, Vankelecom I F J. Polyamide/polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: Film optimization, characterization and performance evaluation. Journal of Membrane Science, 2013, 445: 25–33

    Article  CAS  Google Scholar 

  51. Liu M, Yao G, Cheng Q, Ma M, Yu S, Gao C. Acid stable thin-film composite membrane for nanofiltration prepared from naphthalene-1,3,6-trisulfonylchloride (NTSC) and piperazine (PIP). Journal of Membrane Science, 2012, 415–416: 122–131

    Article  CAS  Google Scholar 

  52. Yu S, Ma M, Liu J, Tao J, Liu M, Gao C. Study on polyamide thin-film composite nanofiltration membrane by interfacial polymerization of polyvinylamine (PVAm) and isophthaloyl chloride (IPC). Journal of Membrane Science, 2011, 379(1–2): 164–173

    Article  CAS  Google Scholar 

  53. Wu D, Yu S, Lawless D, Feng X. Thin film composite nanofiltration membranes fabricated from polymeric amine polyethylenimine imbedded with monomeric amine piperazine for enhanced salt separations. Reactive & Functional Polymers, 2015, 86: 168–183

    Article  CAS  Google Scholar 

  54. Tang B, Zou C, Wu P. Study on a novel polyester composite nanofiltration membrane by interfacial polymerization. II. The role of lithium bromide in the performance and formation of composite membrane. Journal of Membrane Science, 2010, 365(1–2): 276–285

    Article  CAS  Google Scholar 

  55. Zhao J, Su Y, He X, Zhao X, Li Y, Zhang R, Jiang Z. Dopamine composite nanofiltration membranes prepared by self-polymerization and interfacial polymerization. Journal of Membrane Science, 2014, 465: 41–48

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 51678377), Sichuan University Outstanding Youth Foundation (2015SCU04A35), Applied Basic Research of Sichuan Province (2017JY0238) and Key Projects in the Science & Technology Program of Hainan Province (zdkj2016022). This research was also supported by the Brook Byers Institute for Sustainable Systems, Hightower Chair, and the Georgia Research Alliance at the Georgia Institute of Technology. The views and ideas expressed herein are solely of the authors and do not represent the ideas of the funding agencies in any form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baicang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Liu, Z., Li, T. et al. Effect of adding a smart potassium ion-responsive copolymer into polysulfone support membrane on the performance of thin-film composite nanofiltration membrane. Front. Chem. Sci. Eng. 13, 400–414 (2019). https://doi.org/10.1007/s11705-018-1757-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1757-0

Keywords

Navigation