Skip to main content
Log in

Thin-film nanofiltration membrane with monomers of 1,2,4,5-benzene tetracarbonyl chloride and ethylene diamine on electrospun support: preparation, morphology and chlorine resistance properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Novel polyimide nanofiltration membranes were prepared by interfacial polymerization using 1,2,4,5-benzene tetracarbonyl chloride (BTC) and trimesoyl chloride solution in n-hexane and aqueous solution of ethylene diamine on electrospun PVDF support followed by thermal treatment. The BTC was synthesized by the reactions of 1,2,4,5-benzene tetracarboxylic acid with thionyl chloride using triethylamine as a catalyst. The polyimide layer prepared by optimized conditions such as temperature, heating time and interfacial polymerization method found to be good for performance of selective layer. Optimized conditions are confirmed from scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis–differential thermal analysis and differential scanning calorimetry studies. The NF membrane containing polyimide selective layer exhibited 7 ‘gallon/ft2 day’ water flux and ‘94.8%’ salt rejection. Although the salt rejection values of these polyimide membranes were close to the commercial NF polyamide membranes, these membranes exhibited high chlorine resistance. After chlorination for 100 h in a 200 ppm NaClO solution, polyimide membrane showed 1.4% increased flux and about 2.2% decline in salt rejection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhang J, Hai Y, Zuo Y, Jiang Q, Shi C, Li W (2015) Novel diamine-modified composite nanofiltration membranes with chlorine resistance using monomers of 1,2,4,5-benzene tetracarbonyl chloride and m-phenylenediamine. J Mater Chem A 3:8816–8824. doi:10.1039/C4TA07159J

    Article  CAS  Google Scholar 

  2. Kim HJ, Choi K, Baek Y, Kim D-G, Shim J, Yoon J, Lee J-C (2014) High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl Mater Interfaces 6:2819–2829. doi:10.1021/am405398f

    Article  CAS  PubMed  Google Scholar 

  3. Baek Y, Kim C, Seo DK, Kim T, Lee JS, Kim YH, Ahn KH, Bae SS, Lee SC, Lim J (2014) High performance and antifouling vertically aligned carbon nanotube membrane for water purification. J Membr Sci 460:171–177. doi:10.1016/j.memsci.2014.02.042

    Article  CAS  Google Scholar 

  4. Yin J, Zhu G, Deng B (2016) Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379:93–101. doi:10.1016/j.desal.2015.11.001

    Article  CAS  Google Scholar 

  5. Kang G-D, Cao Y-M (2012) Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res 46:584–600. doi:10.1016/j.watres.2011.11.041

    Article  CAS  PubMed  Google Scholar 

  6. Pendergast MM, Hoek EM (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4:1946–1971. doi:10.1039/C0EE00541J

    Article  CAS  Google Scholar 

  7. Li D, Wang H (2010) Recent developments in reverse osmosis desalination membranes. J Mater Chem 20:4551–4566. doi:10.1039/B924553G

    Article  CAS  Google Scholar 

  8. Xu G-R, Wang J-N, Li C-J (2013) Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: Surface modifications and nanoparticles incorporations. Desalination 328:83–100. doi:10.1016/j.desal.2013.08.022

    Article  CAS  Google Scholar 

  9. Wang X, Yeh T-M, Wang Z, Yang R, Wang R, Ma H, Hsiao BS, Chu B (2014) Nanofiltration membranes prepared by interfacial polymerization on thin-film nanofibrous composite scaffold. Polymer 55:1358–1366. doi:10.1016/j.polymer.2013.12.007

    Article  CAS  Google Scholar 

  10. Wang L, Fang M, Liu J, He J, Li J, Lei J (2015) Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications. ACS Appl Mater Interfaces 7:24082–24093. doi:10.1021/acsami.5b07128

    Article  CAS  PubMed  Google Scholar 

  11. Gu J-E, Jun B-M, Kwon Y-N (2012) Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane. Water Res 46:5389–5400. doi:10.1016/j.watres.2012.07.030

    Article  CAS  PubMed  Google Scholar 

  12. Tian M, Qiu C, Liao Y, Chou S, Wang R (2013) Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates. Sep Purif Technol 118:727–736. doi:10.1016/j.seppur.2013.08.021

    Article  CAS  Google Scholar 

  13. Liao Y, Wang R, Tian M, Qiu C, Fane AG (2013) Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J Membr Sci 425:30–39. doi:10.1016/j.memsci.2012.09.023

    Article  CAS  Google Scholar 

  14. Liao Y, Wang R, Fane AG (2013) Engineering superhydrophobic surface on poly (vinylidene fluoride) nanofiber membranes for direct contact membrane distillation. J Membr Sci 440:77–87. doi:10.1016/j.memsci.2013.04.006

    Article  CAS  Google Scholar 

  15. Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586. doi:10.1016/j.memsci.2006.04.026

    Article  CAS  Google Scholar 

  16. Huang L, Arena JT, McCutcheon JR (2016) Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis. J Membr Sci 499:352–360. doi:10.1016/j.memsci.2015.10.030

    Article  CAS  Google Scholar 

  17. Ali ME, Wang L, Wang X, Feng X (2016) Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 386:67–76. doi:10.1016/j.desal.2016.02.034

    Article  CAS  Google Scholar 

  18. Konagaya S, Watanabe O (2000) Influence of chemical structure of isophthaloyl dichloride and aliphatic, cycloaliphatic, and aromatic diamine compound polyamides on their chlorine resistance. J Appl Polym Sci 76:201–207. doi:10.1002/(SICI)1097

    Article  CAS  Google Scholar 

  19. Hai Y, Zhang J, Shi C, Zhou A, Bian C, Li W (2016) Thin film composite nanofiltration membrane prepared by the interfacial polymerization of 1, 2, 4, 5-benzene tetracarbonyl chloride on the mixed amines cross-linked poly (ether imide) support. J Membr Sci 520:19–28. doi:10.1016/j.memsci.2016.07.050

    Article  CAS  Google Scholar 

  20. Lau W, Ismail A, Misdan N, Kassim M (2012) A recent progress in thin film composite membrane: a review. Desalination 287:190–199. doi:10.1016/j.desal.2011.04.004

    Article  CAS  Google Scholar 

  21. Lau W, Gray S, Matsuura T, Emadzadeh D, Chen JP, Ismail A (2015) A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res 80:306–324. doi:10.1016/j.watres.2015.04.037

    Article  CAS  PubMed  Google Scholar 

  22. Karan S, Jiang Z, Livingston AG (2015) Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348:1347–1351. doi:10.1126/science.aaa5058

    Article  CAS  PubMed  Google Scholar 

  23. Chern YT, Chen LW (1991) Interfacial polyfunctional condensation: effect of the reaction conditions. J Appl Polym Sci 42:2543–2550. doi:10.1002/app.1991.070420920

    Article  CAS  Google Scholar 

  24. Ba C, Economy J (2010) Preparation of PMDA/ODA polyimide membrane for use as substrate in a thermally stable composite reverse osmosis membrane. J Membr Sci 363:140–148. doi:10.1016/j.memsci.2010.07.019

    Article  CAS  Google Scholar 

  25. Bender ML, Chow Y-L, Chloupek F (1958) Intramolecular catalysis of hydrolytic reactions. II. The hydrolysis of phthalamic acid 1, 2. J Am Chem Soc 80:5380–5384. doi:10.1021/ja01553a015

    Article  CAS  Google Scholar 

  26. Kreuz JA (1990) Hydrolyses of polyamic-acid solutions. J Polym Sci Part A Polym Chem 28:3787–3793. doi:10.1002/pola.1990.080281321

    Article  CAS  Google Scholar 

  27. Hong S, Kim I-C, Tak T, Kwon Y-N (2013) Interfacially synthesized chlorine-resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes. Desalination 309:18–26. doi:10.1016/j.desal.2012.09.025

    Article  CAS  Google Scholar 

  28. Ding Y, Bikson B, Nelson JK (2002) Polyimide membranes derived from poly (amic acid) salt precursor polymers. 1. Synthesis and characterization. Macromolecules 35:905–911. doi:10.1021/ma0116102

    Article  CAS  Google Scholar 

  29. Liu M, Yu S, Tao J, Gao C (2008) Preparation, structure characteristics and separation properties of thin-film composite polyamide-urethane seawater reverse osmosis membrane. J Membr Sci 325:947–956. doi:10.1016/j.memsci.2008.09.033

    Article  CAS  Google Scholar 

  30. Kwon Y-N, Leckie JO (2006) Hypochlorite degradation of crosslinked polyamide membranes: II. Changes in hydrogen bonding behavior and performance. J Membr Sci 282:456–464. doi:10.1016/j.memsci.2006.06.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Zanjan for financial and other supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Seyed dorraji or M. H. Rasoulifard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qanati, O., Ahmadi, A., Seyed dorraji, M.S. et al. Thin-film nanofiltration membrane with monomers of 1,2,4,5-benzene tetracarbonyl chloride and ethylene diamine on electrospun support: preparation, morphology and chlorine resistance properties. Polym. Bull. 75, 3407–3425 (2018). https://doi.org/10.1007/s00289-017-2214-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2214-9

Keywords

Navigation