Skip to main content
Log in

Detoxification and concentration of corn stover hydrolysate and its fermentation for ethanol production

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Environmental and energy concerns have increased interest in renewable energy sources, particularly biofuels. Thus the fermentation of glucose from sulfuric acid-hydrolyzed corn stover for the production of bioethanol has been explored using a combined acid retardation and continuous-effect membrane distillation treatment process. This process resulted in the separation of the sugars and acids from the acid-catalyzed hydrolysate, the removal of most of the fermentation inhibitors from the hydrolysate and the concentration of the detoxified hydrolysate. The recovery rate of glucose from the sugar-acid mixture using acid retardation was greater than 99.12% and the sulfuric acid was completely recovered from the hydrolysate. When the treated corn stover hydrolysate, containing 100 g/L glucose, was used as a carbon source, 43.06 g/L of ethanol was produced with a productivity of 1.79 g/(L∙h) and a yield of 86.31%. In the control experiment, where glucose was used as the carbon source these values were 1.97 g/(L∙h) and 93.10% respectively. Thus the integration of acid retardation and a continuous-effect membrane distillation process are effective for the production of fuel ethanol from corn stover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim I, Seo Y H, Kim G Y, Han J I. Co-production of bioethanol and biodiesel from corn stover pretreated with nitric acid. Fuel, 2015, 143: 285–289

    Article  CAS  Google Scholar 

  2. Koppram R, Nielsen F, Albers E, Lambert A, Waennstroem S, Welin L, Zacchi G, Olsson L. Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnology for Biofuels, 2013, 6(1): 2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karin O, Andreas R, Mats G, Guido Z. Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass and Bioenergy, 2006, 30(10): 863–869

    Article  CAS  Google Scholar 

  4. Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Applied Microbiology and Biotechnology, 2001, 56(1-2): 17–34

    Article  CAS  PubMed  Google Scholar 

  5. Taylor M P, Mulako I, Tuffin M, Cowan D. Understanding physiological responses to pretreatment inhibitors in ethanologenic fermentations. Journal of Biotechnology, 2012, 7(9): 1169–1181

    Article  CAS  Google Scholar 

  6. Mingjie J, Ming W L, Venkatesh B, Bruce E D. Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresource Technology, 2010, 101(21): 8171–8178

    Article  CAS  Google Scholar 

  7. Yomano L P, York S W, Shanmugam K T, Ingram L O. Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnology Letters, 2009, 31(9): 1389–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang R, Su R. Qi W, Zhang M, He Z. Fractionation of lignocellulose by formic acid pretreatment. Chinese Journal of Process Engineering, 2008, 8(6): 1103–1107

    CAS  Google Scholar 

  9. Heinonen J, Tamminen A, Uusitalo J, Sainio T. Ethanol production from wood via concentrated acid hydrolysis, chromatographic separation, and fermentation. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2012, 87(5): 689–696

    Article  CAS  Google Scholar 

  10. Moe S T, Janga K K, Hertzberg T, Hagg M B, Oeyaas K, Dyrset N. Saccharification of lignocellulosic biomass for biofuel and biorefinery applications—a renaissance for the concentrated acid hydrolysis? Energy Procedia, 2012, 20: 50–58

    Article  CAS  Google Scholar 

  11. Wang L, Chen H. Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochemistry, 2011, 46 (2): 604–607

    Article  CAS  Google Scholar 

  12. Martinez A, Rodriguez M E, Wells M L, York S W, Preston J F, Ingram L O. Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnology Progress, 2001, 17(2): 287–293

    Article  CAS  PubMed  Google Scholar 

  13. Sainio T, Turku I, Heinonen J. Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass. Bioresource Technology, 2011, 102(10): 6048–6057

    Article  CAS  PubMed  Google Scholar 

  14. Cho D H, Lee Y J, Um Y, Sang B I, Kim Y H. Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Applied Microbiology and Biotechnology, 2009, 83(6): 1035–1043

    Article  CAS  PubMed  Google Scholar 

  15. Purwadi R, Niklasson C, Taherzadeh M J. Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. Journal of Biotechnology, 2004, 114(1–2): 187–198

    Article  CAS  PubMed  Google Scholar 

  16. Nanguneri S R, Hester R D. Acid/sugar separation using ion exclusion resins: A process analysis and design. Separation Science and Technology, 1990, 25(13–15): 1829–1842

    Article  CAS  Google Scholar 

  17. Neuman R P, Rudge S R, Ladisch M R. Sulfuric acid-sugar separation by ion exclusion. Reactive Polymers, Ion Exchangers. Sorbents, 1987, 5(1): 55–61

    Article  CAS  Google Scholar 

  18. Hatch MJ, Dillon J A. Acid retardation: Simple physical method for separation of strong acids from their salts. Industrial & Engineering Chemistry Process Design and Development, 1963, 2(4): 253–263

    Article  CAS  Google Scholar 

  19. Liu J, Qin Y, Li P, Zhang K, Liu Q, Liu L. Separation of the acidsugar mixtures by using acid retardation and further concentration of the eluents by using continuous-effect membrane distillation. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2016, 91(4): 1105–1112

    Article  CAS  Google Scholar 

  20. Chen J, Zhang Y, Wang Y, Ji X, Zhang L, Mi X, Huang H. Removal of inhibitors from lignocellulosic hydrolyzates by vacuum membrane distillation. Bioresource Technology, 2013, 144: 680–683

    Article  CAS  PubMed  Google Scholar 

  21. Yao K, Qin Y, Yuan Y, Liu L, He F, Wu Y. A continuous-effect membrane distillation process based on hollow fiber AGMD module with internal latent-heat recovery. AIChE Journal, 2013, 59(4): 1278–1297

    Article  CAS  Google Scholar 

  22. Yang W, Li P, Bo D, Chang H, Wang X, Zhu T. Optimization of furfural production from D-xylose with formic acid as catalyst in a reactive extraction system. Bioresource Technology, 2013, 133: 361–369

    Article  CAS  PubMed  Google Scholar 

  23. Zhang K, Qin Y, He F, Liu J, Zhang Y, Liu L. Concentration of aqueous glycerol solution by using continuous-effect membrane distillation. Separation and Purification Technology, 2015, 144: 186–196

    Article  CAS  Google Scholar 

  24. Liu J. The research of key points on biobutanol production using corn stover. Dissertation for the Doctoral Degree. Tianjin: Tianjin University, 2015, 64–76

    Google Scholar 

  25. Seidel-Morgenstern A, Schulte M, Epping A. Fundamentals and General Terminology, in Preparative Chromatography. Weinheim: Wiley-VCH Verlag, 2012, 7–46

    Google Scholar 

  26. Clark T A, Mackie K L. Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1984, 34B(2): 101–110

    CAS  Google Scholar 

  27. Grassmanned B P, Sawisto E B H. Physical principles of chemical engineering. Oxford: Pergamon Press, 1971

    Google Scholar 

  28. Almeida e Silva J B, Lima U A, Taqueda M E S, Guaragna F G. Use of response surface methodology for selection of nutrient levels for culturing Paecilomyces variotii in eucalyptus hemicellulosic hydrolyzate. Bioresource Technology, 2003, 87(1): 45–50

    Article  CAS  PubMed  Google Scholar 

  29. Yue G J. An introduction to cellulosic ethanol engineering. Beijing: Chemical Industry Press, 2014, 5–29 (in Chinese)

    Google Scholar 

  30. Sierkstra L N, Silljé H H W, Verbakel J M A, Verrips C T. The glucose-6 phosphate isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae. FEBS Journal, 1993, 214(1): 121–127

    CAS  Google Scholar 

  31. Maiorella B, Blanch H W, Wilke C R. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 1983, 25(1): 103–121

    Article  CAS  PubMed  Google Scholar 

  32. Torija M J, Rozes N, Poblet M, Guillamon J M, Mas A. Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. International Journal of Food Microbiology, 2003, 80(1): 47–53

    Article  CAS  PubMed  Google Scholar 

  33. Phisalaphong M, Srirattana N, Tanthapanichakoon W. Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation. Biochemical Engineering Journal, 2006, 28(1): 36–43

    Article  CAS  Google Scholar 

  34. Zhang K C. Alcohol and DistillingWine Craft. Beijing: China Light Industry Press, 1995, 246–247 (in Chinese)

    Google Scholar 

  35. Cai L Y, Ma Y L, Ma X X, Lv J M. Improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments. Bioresource Technology, 2016, 212: 42–46

    Article  CAS  PubMed  Google Scholar 

  36. Messaoudi Y, Smichi N, Bouachir F, Gargouri M. Fractionation and biotransformation of lignocelluloses-based wastes for bioethanol, xylose and vanillin production. Waste and Biomass Valorization, 2017, DOI: https://doi.org/10.1007/s12649-017-0062-3

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 21376175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Qin, Y., Liu, Y. et al. Detoxification and concentration of corn stover hydrolysate and its fermentation for ethanol production. Front. Chem. Sci. Eng. 13, 140–151 (2019). https://doi.org/10.1007/s11705-018-1714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1714-y

Keywords

Navigation