Skip to main content
Log in

Surface molecularly imprinted polymers for solid-phase extraction of (–)-epigallocatechin gallate from toothpaste

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Surface molecularly imprinted polymers (SMIPs) have been synthesized to selectively determine (–)-epigallocatechin gallate in aqueous media. SMIPs were prepared using a surface grafting copolymerization method on a functionalized silica gel modified with β-cyclodextrin and vinyl groups. The morphology and composition of the SMIPs were investigated by scanning electron microscopy, Fourier transform-infrared spectroscopy and thermogravimetric analysis. In addition, the molecular binding capacity, recognition properties and selectivity of the SMIPs were evaluated. The imprinted polymers were found to have a highly specific recognition and binding capacity for (–)-epigallocatechin gallate in aqueous media which is the result of the hydrophobic properties of the β-cyclodextrin and the hydrogen-bonding interactions of methacrylic acid. The SMIPs were successfully employed as solid-phase extraction adsorbents prior to the HPLC determination of (–)-epigallocatechin gallate in toothpaste. The HPLC analysis had a linear dynamic range of 0.5–50.0 μg·mL−1 with a correlation coefficient of 0.9998 and the recoveries ranged from 89.4% to 97.0% with relative standard deviations less than 4.8%. The limit of detection and limit of quantification were 0.17 and 0.33 μg·mL−1, respectively. The method provides a promising approach for the preparation of selective materials for the purification and determination of complex samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sang S, Lambert J D, Ho C T, Yang C S. The chemistry and biotransformation of tea constituents. Pharmacological Research, 2011, 64(2): 87–99

    Article  CAS  Google Scholar 

  2. Azman N A, Peiro S, Fajari L, Julia L, Almajano M P. Radical scavenging of white tea and its flavonoid constituents by electron paramagnetic resonance (EPR) spectroscopy. Journal of Agricultural and Food Chemistry, 2014, 62(25): 5743–5748

    Article  CAS  Google Scholar 

  3. Panza V S, Wazlawik E, Ricardo Schutz G, Comin L, Hecht K C, da Silva E L. Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition (Burbank, Los Angeles County, Calif.), 2008, 24(5): 433–442

    Article  CAS  Google Scholar 

  4. Marchese A, Coppo E, Sobolev A P, Rossi D, Mannina L, Daglia M. Influence of in vitro simulated gastroduodenal digestion on the antibacterial activity, metabolic profiling and polyphenols content of green tea (Camellia sinensis). Food Research International, 2014, 63: 182–191

    Article  CAS  Google Scholar 

  5. Lambert J D, Sang S, Hong J, Yang C S. Anticancer and antiinflammatory effects of cysteine metabolites of the green tea polyphenol, (–)-epigallocatechin-3-gallate. Journal of Agricultural and Food Chemistry, 2010, 58(18): 10016–10019

    Article  CAS  Google Scholar 

  6. Khan N, Mukhtar H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Letters, 2008, 269(2): 269–280

    Article  CAS  Google Scholar 

  7. Ananingsih V K, Sharma A, Zhou W. Green tea catechins during food processing and storage: A review on stability and detection. Food Research International, 2013, 50(2): 469–479

    Article  CAS  Google Scholar 

  8. Subrahmanyam S, Piletsky S A, Piletska E V, Chen B, Karim K, Turner A P F. ‘Bite-and-Switch’ approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosensors & Bioelectronics, 2001, 16(9-12): 631–637

    Article  CAS  Google Scholar 

  9. Farrington K, Magner E, Regan F. Predicting the performance of molecularly imprinted polymers: Selective extraction of caffeine by molecularly imprinted solid phase extraction. Analytica Chimica Acta, 2006, 566(1): 60–68

    Article  CAS  Google Scholar 

  10. Euterpio M A, Pagano I, Piccinelli A L, Rastrelli L, Crescenzi C. Development and validation of a method for the determination of (E)-resveratrol and related phenolic compounds in beverages using molecularly imprinted solid phase extraction. Journal of Agricultural and Food Chemistry, 2013, 61(8): 1640–1645

    Article  CAS  Google Scholar 

  11. Appell M, Jackson M A, Wang L C, Ho C H, Mueller A. Determination of fusaric acid in maize using molecularly imprinted SPE clean-up. Journal of Separation Science, 2014, 37(3): 281–286

    Article  CAS  Google Scholar 

  12. Yola M L, Atar N, Eren T. Determination of amikacin in human plasma by molecular imprinted SPR nanosensor. Sensors and Actuators. B, Chemical, 2014, 198: 70–76

    Article  CAS  Google Scholar 

  13. Zhou J, Gan N, Li T, Hu F, Li X, Wang L, Zheng L. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. Biosensors & Bioelectronics, 2014, 54: 199–206

    Article  CAS  Google Scholar 

  14. Xu S, Guo C, Li Y, Yu Z, Wei C, Tang Y. Methyl parathion imprinted polymer nanoshell coated on the magnetic nanocore for selective recognition and fast adsorption and separation in soils. Journal of Hazardous Materials, 2014, 264: 34–41

    Article  CAS  Google Scholar 

  15. Sadowski R, Gadzala-Kopciuch R. Isolation and determination of estrogens in water samples by solid-phase extraction using molecularly imprinted polymers and HPLC. Journal of Separation Science, 2013, 36(14): 2299–2305

    Article  CAS  Google Scholar 

  16. Cheong W J, Yang S H, Ali F. Molecular imprinted polymers for separation science: A review of reviews. Journal of Separation Science, 2013, 36(3): 609–628

    Article  CAS  Google Scholar 

  17. Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chemical Society Reviews, 2011, 40(5): 2922–2942

    Article  CAS  Google Scholar 

  18. Yue C Y, Ding G S, Liu F J, Tang A N. Water-compatible surface molecularly imprinted silica nanoparticles as pseudostationary phase in electrokinetic chromatography for the enantioseparation of tryptophan. Journal of Chromatography. A, 2013, 1311: 176–182

    Article  CAS  Google Scholar 

  19. Mehdinia A, Baradaran Kayyal T, Jabbari A, Aziz-Zanjani M O, Ziaei E. Magnetic molecularly imprinted nanoparticles based on grafting polymerization for selective detection of 4-nitrophenol in aqueous samples. Journal of Chromatography. A, 2013, 1283: 82–88

    Article  CAS  Google Scholar 

  20. Fang G Z, Tan J, Yan X P. An ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique combined with a sol-gel process for selective solid-phase extraction of cadmium(II). Analytical Chemistry, 2005, 77(6): 1734–1739

    Article  CAS  Google Scholar 

  21. Qin L, He X W, Zhang W, Li W Y, Zhang Y K. Surface-modified polystyrene beads as photografting imprinted polymer matrix for chromatographic separation of proteins. Journal of Chromatography. A, 2009, 1216(5): 807–814

    Article  CAS  Google Scholar 

  22. Jeon H, Kim G. Effects of a cell-imprinted poly(dimethylsiloxane) surface on the cellular activities of MG63 osteoblast-like cells: Preparation of a patterned surface, surface characterization, and bone mineralization. Langmuir, 2012, 28(37): 13423–13430

    Article  CAS  Google Scholar 

  23. Cumbo A, Lorber B, Corvini P F, Meier W, Shahgaldian P. A synthetic nanomaterial for virus recognition produced by surface imprinting. Nature Communications, 2013, 4: 1503

    Article  Google Scholar 

  24. Qin L, He X W, Li W Y, Zhang Y K. Molecularly imprinted polymer prepared with bonded beta-cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media. Journal of Chromatography. A, 2008, 1187(1-2): 94–102

    Article  CAS  Google Scholar 

  25. Zhang W, Qin L, He X W, Li W Y, Zhang Y K. Novel surface modified molecularly imprinted polymer using acryloyl-betacyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution. Journal of Chromatography. A, 2009, 1216(21): 4560–4567

    Article  CAS  Google Scholar 

  26. Ma Y, Pan G, Zhang Y, Guo X, Zhang H. Narrowly dispersed hydrophilic molecularly imprinted polymer nanoparticles for efficient molecular recognition in real aqueous samples including river water, milk, and bovine serum. Angewandte Chemie International Edition, 2013, 52(5): 1511–1514

    Article  CAS  Google Scholar 

  27. Pan G, Zhang Y, Ma Y, Li C, Zhang H. Efficient one-pot synthesis of water-compatible molecularly imprinted polymer microspheres by facile RAFT precipitation polymerization. Angewandte Chemie International Edition, 2011, 50(49): 11731–11734

    Article  CAS  Google Scholar 

  28. Zhang H. Water-compatible molecularly imprinted polymers: Promising synthetic substitutes for biological receptors. Polymer, 2014, 55(3): 699–714

    Article  CAS  Google Scholar 

  29. Zhang Y, Li Y, Hu Y, Li G, Chen Y. Preparation of magnetic indole- 3-acetic acid imprinted polymer beads with 4-vinylpyridine and beta-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues. Journal of Chromatography. A, 2010, 1217(47): 7337–7344

    Article  CAS  Google Scholar 

  30. Kyzas G Z, Lazaridis N K, Bikiaris D N. Optimization of chitosan and beta-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohydrate Polymers, 2013, 91(1): 198–208

    Article  CAS  Google Scholar 

  31. Tsai H A, Syu M J. Synthesis of creatinine-imprinted poly(betacyclodextrin) for the specific binding of creatinine. Biomaterials, 2005, 26(15): 2759–2766

    Article  CAS  Google Scholar 

  32. Xu Z, Xu L, Kuang D, Zhang F, Wang J. Exploiting ß-cyclodextrin as functional monomer in molecular imprinting for achieving recognition in aqueous media. Materials Science and Engineering C, 2008, 28(8): 1516–1521

    Article  CAS  Google Scholar 

  33. Lai S M, Gu J Y, Huang B H, Chang C M, Lee W Y. Preparative separation and purification of epigallocatechin gallate from green tea extracts using a silica adsorbent containing ß-cyclodextrin. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2012, 887-888: 112–121

    Article  CAS  Google Scholar 

  34. Osawa T, Shirasaka K, Matsui T, Yoshihara S, Akiyama T, Hishiya T, Asanuma H, Komiyama M. Importance of the position of vinyl group on ß-cyclodextrin for the effective imprinting of amino acid derivatives and oligopeptides in water. Macromolecules, 2006, 39(7): 2460–2466

    Article  CAS  Google Scholar 

  35. Zhang Z, Yang X, Zhang H, Zhang M, Luo L, Hu Y, Yao S. Novel molecularly imprinted polymers based on multi-walled carbon nanotubes with binary functional monomer for the solid-phase extraction of erythromycin from chicken muscle. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2011, 879(19): 1617–1624

    Article  CAS  Google Scholar 

  36. Feng Y Q, Xie M J, Da S L. Preparation and characterization of an L-tyrosine-derivatized ß-cyclodextrin-bonded silica stationary phase for liquid chromatography. Analytica Chimica Acta, 2000, 403(1-2): 187–195

    Article  CAS  Google Scholar 

  37. Pan J, Zou X, Wang X, Guan W, Yan Y, Han J. Selective recognition of 2,4-dichlorophenol from aqueous solution by uniformly sized molecularly imprinted microspheres with ß-cyclodextrin/attapulgite composites as support. Chemical Engineering Journal, 2010, 162(3): 910–918

    Article  CAS  Google Scholar 

  38. Folch-Cano C, Guerrero J, Speisky H, Jullian C, Olea-Azar C. NMR and molecular fluorescence spectroscopic study of the structure and thermodynamic parameters of EGCG/ß-cyclodextrin inclusion complexes with potential antioxidant activity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 78(1-4): 287–298

    Article  Google Scholar 

  39. Ishizu T, Kajitani S, Tsutsumi H, Yamamoto H, Harano K. Diastereomeric difference of inclusion modes between (–)- epicatechin gallate, (–)-epigallocatechin gallate and (+)-gallocatechin gallate, with beta-cyclodextrin in aqueous solvent. Magnetic Resonance in Chemistry, 2008, 46(5): 448–456

    Article  CAS  Google Scholar 

  40. Matsui J, Miyoshi Y, Doblhoff-Dier O, Takeuchi T. A molecularly imprinted synthetic polymer receptor selective for atrazine. Analytical Chemistry, 1995, 67(23): 4404–4408

    Article  CAS  Google Scholar 

  41. Arts I C W, Putte B V D, Hollman P C H. Catechin contents of foods commonly consumed in the Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. Journal of Agricultural and Food Chemistry, 2000, 48(5): 1752–1757

    Article  CAS  Google Scholar 

  42. Khokhar S, Magnusdottir S G M. Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. Journal of Agricultural and Food Chemistry, 2002, 50(3): 565–570

    Article  CAS  Google Scholar 

  43. Wang N J, Zhou L L, Guo J, Ye Q Q, Lin J M, Yuan J Y. Adsorption of environmental pollutants using magnetic hybrid nanopaticles modified with ß-cyclodextrin. Applied Surface Science, 2014, 305: 267–273

    Article  CAS  Google Scholar 

  44. Wang X Y, Kang Q, Shen D Z, Zhang Z, Li J H, Chen L X. Novel monodisperse molecularly imprinted shell for estradiol based on surface imprinted hollow viny-SiO2 particles. Talanta, 2014, 124: 7–13

    Article  CAS  Google Scholar 

  45. Liu H M, Liu C H, Yang X J, Zeng S J, Xiong Y Q, Xu W J. Uniformly sized ß-cyclodextrin molecularly imprinted microspheres prepared by a novel surface imprinting technique for ursolic acid. Analytica Chimica Acta, 2008, 628(1): 87–94

    Article  CAS  Google Scholar 

  46. Gong X Y, Cao X J. Preparation of molecularly imprinted polymers for artemisinin based on the surfaces of silica gel. Journal of Biotechnology, 2011, 153(1-2): 8–14

    Article  CAS  Google Scholar 

  47. Tan I A, Ahmad A L, Hameed B H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials, 2009, 164(2-3): 473–482

    Article  CAS  Google Scholar 

  48. Baydemir G, Andac M, Bereli N, Say R, Denizli A. Selective removal of bilirubin from human plasma with bilirubin-imprinted particles. Industrial & Engineering Chemistry Research, 2007, 46(9): 2843–2852

    Article  CAS  Google Scholar 

  49. Lopez Mdel M, Perez M C, Garcia M S, Vilarino J M, Rodriguez M V, Losada L F. Preparation, evaluation and characterization of quercetin-molecularly imprinted polymer for preconcentration and clean-up of catechins. Analytica Chimica Acta, 2012, 721: 68–78

    Article  Google Scholar 

  50. Ji W, Chen L, Ma X, Wang X, Gao Q, Geng Y, Huang L. Molecularly imprinted polymers with novel functional monomer for selective solid-phase extraction of gastrodin from the aqueous extract of Gastrodia elata. Journal of Chromatography. A, 2014, 1342: 1–7

    Article  CAS  Google Scholar 

  51. Zhang Z, Zhang M, Liu Y, Yang X, Luo L, Yao S. Preparation of lphenylalanine imprinted polymer based on monodisperse hybrid silica microsphere and its application on chiral separation of phenylalanine racemates as HPLC stationary phase. Separation and Purification Technology, 2012, 87: 142–148

    Article  CAS  Google Scholar 

  52. Xu F, Duan Q, Zhang H. Preparation and adsorption property of (–)-epigallocatechin gallate surface molecularly imprinted polymer. Chinese Journal of Process Engineering, 2011, 11(4): 706–710

    Google Scholar 

  53. Chen S, Luo Z, Ma X, Xue L, Lan H, Zhang W. Efficient separation and purification of epigallocatechin gallate (EGCG) based on EGCG-imprinted polymer prepared with chitosan as matrix. Analytical Letters, 2012, 45(16): 2300–2309

    Article  CAS  Google Scholar 

  54. Zhu Q Z, Haupt K, Knopp D, Niessner R. Molecularly imprinted polymer for metsulfuron-methyl and its binding characteristics for sulfonylurea herbicides. Analytica Chimica Acta, 2002, 468(2): 217–227

    Article  CAS  Google Scholar 

  55. Jullian C, Miranda S, Zapata-Torres G, Mendizabal F, Olea-Azar C. Studies of inclusion complexes of natural and modified cyclodextrin with (+)catechin by NMR and molecular modeling. Bioorganic & Medicinal Chemistry, 2007, 15(9): 3217–3224

    Article  CAS  Google Scholar 

  56. Yan C, Xiu Z, Li X, Hao C. Molecular modeling study of betacyclodextrin complexes with (+)-catechin and (–)-epicatechin. Journal of Molecular Graphics & Modelling, 2007, 26(2): 420–428

    Article  CAS  Google Scholar 

  57. Turner N W, Piletska E V, Karim K, Whitcombe M, Malecha M, Magan N, Baggiani C, Piletsky S A. Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A. Biosensors & Bioelectronics, 2004, 20(6): 1060–1067

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunling Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Hu, Y. & Yao, K. Surface molecularly imprinted polymers for solid-phase extraction of (–)-epigallocatechin gallate from toothpaste. Front. Chem. Sci. Eng. 9, 467–478 (2015). https://doi.org/10.1007/s11705-015-1526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1526-2

Keywords

Navigation