Skip to main content
Log in

Information gathering and processing with fluorescent molecules

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Molecular information gathering and processing — a young field of applied chemistry — is undergoing good growth. The progress is occurring both in terms of conceptual development and in terms of the strengthening of older concepts with new examples. This review critically surveys these two broad avenues. We consider some cases where molecules emulate one of the building blocks of electronic logic gates. We then examine molecular emulation of various Boolean logic gates carrying one, two or three inputs. Some single-input gates are popular information gathering devices. Special systems, such as ‘lab-on-a-molecule’ and molecular keypad locks, also receive attention. A situation deviating from the Boolean blueprint is also discussed. Some pointers are offered for maintaining the upward curve of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Silva A P, Gunaratne H Q N, McCoy C P. A molecular photoionic AND gate based on fluorescent signalling. Nature, 1993, 364(6432): 42–44

    Article  Google Scholar 

  2. Balzani V, Venturi M, Credi A. Molecular Devices and Machines. 2nd ed. Weinheim: Wiley-VCH, 2008

    Book  Google Scholar 

  3. Katz E. Molecular and Supramolecular Information Processing: from Molecular Switches to Logic Systems. Weinheim: Wiley-VCH, 2012

    Book  Google Scholar 

  4. Katz E. Biomolecular Information Processing: from Logic Systems to Smart Sensors and Actuators. Weinheim: Wiley-VCH, 2012

    Book  Google Scholar 

  5. Szacilowski K. Infochemistry: Information Processing at the Nanoscale. Chichester: Wiley, 2012

    Book  Google Scholar 

  6. Feringa B, Browne WS. Molecular Switches. 2nd ed. Wiley-VCH, Weinheim, 2012

    Google Scholar 

  7. de Silva A P. Molecular Logic-based Computation. Cambridge: Royal Society of Chemistry, 2012

    Google Scholar 

  8. de Silva A P, McClenaghan N D, McCoy C P. Logic gates. In: Balzani V, ed. Electron Transfer in Chemistry, Vol 5. Weinheim: Wiley-VCH, 2001, 156

    Chapter  Google Scholar 

  9. Raymo F M. Digital processing and communication with molecular switches. Advanced Materials, 2002, 14(6): 401–414

    Article  CAS  Google Scholar 

  10. de Silva A P, McClenaghan N D. Molecular-scale logic gates. Chemistry, 2004, 10(3): 574–586

    Article  CAS  Google Scholar 

  11. de Silva A P, Leydet Y, Lincheneau C, McClenaghan N D. Chemical approaches to nanometre-scale logic gates. Journal of Physics Condensed Matter, 2006, 18(33): S1847–S1872

    Article  CAS  Google Scholar 

  12. de Silva A P, Uchiyama S. Molecular logic and computing. Nature Nanotechnology, 2007, 2(7): 399–410

    Article  CAS  Google Scholar 

  13. Benenson Y. Biocomputers: from test tubes to live cells. Molecular BioSystems, 2009, 5(7): 675–685

    Article  CAS  Google Scholar 

  14. Katz E, Privman V. Enzyme-based logic systems for information processing. Chemical Society Reviews, 2010, 39(5): 1835–1857

    Article  CAS  Google Scholar 

  15. Tian H. Data processing on a unimolecular platform. Angewandte Chemie International Edition, 2010, 49(28): 4710–4712

    Article  CAS  Google Scholar 

  16. Pischel U, Andréasson J, Gust D, Pais V F. Information processing with molecules — Quo vadis? ChemPhysChem, 2013, 14(1): 28–46

    Article  CAS  Google Scholar 

  17. Bissell R A, de Silva A P. Phosphorescent PET (photoinduced electron transfer) sensors: Prototypical examples for proton monitoring and a ‘message in a bottle’ enhancement strategy with cyclodextrins. Journal of the Chemical Society: Chemical Communications, 1991, 17(17): 1148–1150

    Google Scholar 

  18. Bryan A J, de Silva A P, de Silva S A, Rupasinghe R A D, Sandanayake K R A. Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations. Biosensors, 1989, 4(3): 169–179

    Article  CAS  Google Scholar 

  19. Gell C, Brockwell D, Smith A. Handbook of Single Molecule Fluorescence Spectroscopy. New York: Oxford University Press, 2006

    Google Scholar 

  20. Gregg J. Ones and Zeros: Understanding Boolean Algebra, Digital Circuits, and the Logic of Sets. Wiley-IEEE Press, 1998

    Book  Google Scholar 

  21. Malvino A P, Brown J A. Digital Computer Electronics, Glencoe. 3rd ed. Lake Forest, 1993

    Google Scholar 

  22. Maxfield C. Bebop to the Boolean Boogie: An Unconventional Guide to Electronics. Massachusetts: Newnes, 2008

    Google Scholar 

  23. Ben-Ari M. Mathematical Logic for Computer Science. Hemel Hempstead: Prentice-Hall, 1993

    Google Scholar 

  24. Hughes E. Electrical Technology. 6th ed. Burnt Mill: Longman, 1990

    Google Scholar 

  25. Keirstead A E, Bridgewater J W, Terazono Y, Kodis G, Straight S, Liddell P A, Moore A L, Moore T A, Gust D. Photochemical “triode” molecular signal transducer. Journal of the American Chemical Society, 2010, 132(18): 6588–6595

    Article  CAS  Google Scholar 

  26. Copley G, Moore T A, Moore A L, Gust D. Analog applications of photochemical switches. Advanced Materials, 2013, 25(3): 456–461

    Article  CAS  Google Scholar 

  27. Irie M. Diarylethenes for memories and switches. Chemical Reviews, 2000, 100(5): 1685–1716

    Article  CAS  Google Scholar 

  28. Huxley A J M, Schroeder M, Gunaratne H Q N, de Silva A P. Modification of fluorescent photoinduced electron transfer (PET) sensors/switches to produce molecular photoionic triode action. Angewandte Chemie, 2014, 126(14): 3696–3699

    Article  Google Scholar 

  29. Callan J F, de Silva A P, Ferguson J, Huxley A J, O’Brien A M. Fluorescent photoionic devices with two receptors and two switching mechanisms: Applications to pH sensors and implications for metal ion detection. Tetrahedron, 2004, 60(49): 11125–11131

    Article  CAS  Google Scholar 

  30. de Silva A P, Gunaratne H Q N, Sandanayake K R A S. A new benzo-annelated cryptand and a derivative with alkali cationsensitive fluorescence. Tetrahedron Letters, 1990, 31(36): 5193–5196

    Article  Google Scholar 

  31. de Silva A P, Gunaratne H Q, Gunnlaugsson T, Huxley A J, McCoy C P, Rademacher J T, Rice T E. Signaling recognition events with fluorescent sensors and switches. Chemical Reviews, 1997, 97(5): 1515–1566

    Article  Google Scholar 

  32. Bishop E. Indicators. Oxford: Pergamon, 1972

    Google Scholar 

  33. de Silva A P, Gunaratne H Q N, Lynch P L M, Patty A J, Spence G L. Luminescence and charge transfer. Part 3. The use of chromophores with ICT (internal charge transfer) excited states in the construction of fluorescent PET (photoinduced electron transfer) pH sensors and related absorption pH sensors with aminoalkyl side chains. Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry, 1993, (9): 1611–1616

    Google Scholar 

  34. de Silva A P, Vance T P, West M E S, Wright G D. Bright molecules with sense, logic, numeracy and utility. Organic & Biomolecular Chemistry, 2008, 6(14): 2468–2480

    Article  CAS  Google Scholar 

  35. Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nature Nanotechnology, 2007, 2(10): 605–615

    Article  CAS  Google Scholar 

  36. Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science, 2001, 294(5545): 1317–1320

    Article  CAS  Google Scholar 

  37. Wang B, Anslyn E V. Chemosensors: Principles, Strategies, and Applications. John Wiley & Sons, 2011

    Google Scholar 

  38. Ast S, Schwarze T, Müller H, Sukhanov A, Michaelis S, Wegener J, Wolfbeis O S, Körzdörfer T, Dürkop A, Holdt H J. A highly K+- selective phenylaza-[18] crown-6-lariat-ether-based fluoroionophore and its application in the sensing of K+ ions with an optical sensor film and in cells. Chemistry, 2013, 19(44): 14911–14917

    Article  CAS  Google Scholar 

  39. Schultz R A, White B D, Dishong D M, Arnold K A, Gokel G W. 12-, 15-, and 18-Membered-ring nitrogen-pivot lariat ethers: Syntheses, properties, and sodium and ammonium cation binding properties. Journal of the American Chemical Society, 1985, 107(23): 6659–6668

    Article  CAS  Google Scholar 

  40. Zheng S, Lynch P L M, Rice T E, Moody T S, Gunaratne H Q, de Silva A P. Structural effects on the pH-dependent fluorescence of naphthalenic derivatives and consequences for sensing/switching. Photochemical & Photobiological Sciences, 2012, 11(11): 1675–1681

    Article  CAS  Google Scholar 

  41. Grabowski Z R, Dobkowski J. Twisted intramolecular charge transfer (TICT) excited states: Energy and molecular structure. Pure and Applied Chemistry, 1983, 55(2): 245–252

    Article  CAS  Google Scholar 

  42. Batat P, Vives G, Bofinger R, Chang R W, Kauffmann B, Oda R, Jonusauskas G, McClenaghan N D. Dynamics of ion-regulated photoinduced electron transfer in BODIPY-BAPTA conjugates. Photochemical & Photobiological Sciences, 2012, 11(11): 1666–1674

    Article  CAS  Google Scholar 

  43. He H, Mortellaro M A, Leiner M J P, Young S T, Fraatz R J, Tusa J K. A fluorescent chemosensor for sodium based on photoinduced electron transfer. Analytical Chemistry, 2003, 75(3): 549–555

    Article  CAS  Google Scholar 

  44. He H, Mortellaro M A, Leiner M J P, Fraatz R J, Tusa J K. A fluorescent sensor with high selectivity and sensitivity for potassium in water. Journal of the American Chemical Society, 2003, 125(6): 1468–1469

    Article  CAS  Google Scholar 

  45. Tusa J K, He H. Critical care analyzer with fluorescent optical chemosensors for blood analytes. Journal of Materials Chemistry, 2005, 15(27–28): 2640–2647

    Article  CAS  Google Scholar 

  46. He H, Jenkins K, Lin C. A fluorescent chemosensor for calcium with excellent storage stability in water. Analytica Chimica Acta, 2008, 611(2): 197–204

    Article  CAS  Google Scholar 

  47. de Silva A P, Gunaratne H Q N, Habib-Jiwan J L, McCoy C P, Rice T E, Soumillion J P. New fluorescent model compounds for the study of photoinduced electron transfer: the influence of a molecular electric field in the excited state. Angewandte Chemie International Edition, 1995, 34(16): 1728–1731

    Article  Google Scholar 

  48. http://www.optimedical.com

  49. de Silva A P, Gunaratne H Q N, Gunnlaugsson T. Fluorescent PET (photoinduced electron transfer) reagents for thiols. Tetrahedron Letters, 1998, 39(28): 5077–5080

    Article  Google Scholar 

  50. Kojima H, Nagano T. Fluorescent indicators for nitric oxide. Advanced Materials, 2000, 12(10): 763–765

    Article  CAS  Google Scholar 

  51. Plater M J, Greig I, Helfrich M H, Ralston S H. The synthesis and evaluation of o-phenylenediamine derivatives as fluorescent probes for nitric oxide detection. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry, 2001, (20): 2553–2559

    Google Scholar 

  52. James T D, Phillips M D, Shinkai S. Boronic Acids in Saccharide Recognition. Royal Society of Chemistry, 2006

    Google Scholar 

  53. Bissell R A, Bryan A J, de Silva A P, McCoy C P. Fluorescent PET sensors with targeting/anchoring modules as molecular versions of submarine periscopes for mapping membrane-bounded protons. Journal of the Chemical Society: Chemical Communications, 1994, (4): 405–407

    Google Scholar 

  54. Uchiyama S, Iwai K, de Silva A P. Multiplexing sensory molecules map protons near micellar membranes. Angewandte Chemie International Edition, 2008, 47(25): 4667–4669

    Article  CAS  Google Scholar 

  55. Harold FM. The Vital Force: A Study of Bioenergetics. New York: WH Freeman, 1986

    Google Scholar 

  56. Bhardwaj V K, Hundal MS, Hundal G. A tripodal receptor bearing catechol groups for the chromogenic sensing of F-ions via frozen proton transfer. Tetrahedron, 2009, 65(41): 8556–8562

    Article  CAS  Google Scholar 

  57. Winstanley K J, Sayer A M, Smith D K. Anion binding by catechols — an NMR, optical and electrochemical study. Organic & Biomolecular Chemistry, 2006, 4(9): 1760–1767

    Article  CAS  Google Scholar 

  58. de Silva A P, McClean G D, Pagliari S. Direct detection of ion pairs by fluorescence enhancement. Chemical Communications, 2003, (16): 2010–2011

    Google Scholar 

  59. Koskela S J M, Fyles TM, James T D. A ditopic fluorescent sensor for potassium fluoride. Chemical Communications, 2005, (7): 945–947

    Google Scholar 

  60. Alfonso M, Espinosa A, Tárraga A, Molina P. A simple but effective dual redox and fluorescent ion pair receptor based on a ferrocene-imidazopyrene dyad. Organic Letters, 2011, 13(8): 2078–2081

    Article  CAS  Google Scholar 

  61. Moro A J, Cywinski P J, Körsten S, Mohr G J. An ATP fluorescent chemosensor based on a Zn(II)-complexed dipicolylamine receptor coupled with a naphthalimide chromophore. Chemical Communications, 2010, 46(7): 1085–1087

    Article  CAS  Google Scholar 

  62. de Silva A P, Gunaratne H Q N, McVeigh C, Maguire G E M, Maxwell P R S, O’Hanlon E. Fluorescent signalling of the brain neurotransmitter Γ-aminobutyric acid and related amino acid zwitterions. Chemical Communications, 1996, (18): 2191–2192

    Google Scholar 

  63. Karak D, Das S, Lohar S, Banerjee A, Sahana A, Hauli I, Mukhopadhyay S K, Safin D A, Babashkina M G, Bolte M, Garcia Y, Das D. A naphthalene-thiophene hybrid molecule as a fluorescent AND logic gate with Zn2+ and OAc-ions as inputs: cell imaging and computational studies. Dalton Transactions, 2013, 42(19): 6708–6715

    Article  CAS  Google Scholar 

  64. Farrugia T J, Magri D C. ’Pourbaix sensors’: A new class of fluorescent pE-pH molecular AND logic gates based on photoinduced electron transfer. New Journal of Chemistry, 2012, 37(1): 148–151

    Article  CAS  Google Scholar 

  65. Magri D C. A fluorescent and logic gate driven by electrons and protons. New Journal of Chemistry, 2009, 33(3): 457–461

    Article  CAS  Google Scholar 

  66. Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. Oxford: Pergamon Press, 1966

    Google Scholar 

  67. Bu J H, Zheng Q Y, Chen C F, Huang Z T. New fluorescencequenching process through resumption of PET process induced by complexation of alkali metal ion. Organic Letters, 2004, 6(19): 3301–3303

    Article  CAS  Google Scholar 

  68. Nishimura G, Ishizumi K, Shiraishi Y, Hirai T. A triethylenetetramine bearing anthracene and benzophenone as a fluorescent molecular logic gate with either-or switchable dual logic functions. The Journal of Physical Chemistry B, 2006, 110(43): 21596–21602

    Article  CAS  Google Scholar 

  69. Montenegro J M, Perez-Inestrosa E, Collado D, Vida Y, Suau R. A natural-product-inspired photonic logic gate based on photoinduced electron-transfer-generated dual-channel fluorescence. Organic Letters, 2004, 6(14): 2353–2355

    Article  CAS  Google Scholar 

  70. Banthia S, Samanta A. Multiple logical access with a single fluorophore-spacer-receptor system: Realization of inhibit (INH) logic function. European Journal of Organic Chemistry, 2005, 2005(23): 4967–4970

    Article  CAS  Google Scholar 

  71. Gunnlaugsson T, Mac Dónaill D A, Parker D. Lanthanide macrocyclic quinolyl conjugates as luminescent molecular-level devices. Journal of the American Chemical Society, 2001, 123(51): 12866–12876

    Article  CAS  Google Scholar 

  72. de Sousa M, Kluciar M, Abad S, Miranda M A, de Castro B, Pischel U. An inhibit (INH) molecular logic gate based on 1,8-naphthalimide-sensitised europium luminescence. Photochemical & Photobiological Sciences, 2004, 3(7): 639–642

    Article  CAS  Google Scholar 

  73. Park J S, Karnas E, Ohkubo K, Chen P, Kadish K M, Fukuzumi S, Bielawski C W, Hudnall T W, Lynch V M, Sessler J L. Ionmediated electron transfer in a supramolecular donor-acceptor ensemble. Science, 2010, 329(5997): 1324–1327

    Article  CAS  Google Scholar 

  74. Kaur K, Bhardwaj V K, Kaur N, Singh N. Fluorescent primary sensor for zinc and resultant complex as secondary sensor towards phosphorylated biomolecules: INHIBIT logic gate. Inorganica Chimica Acta, 2013, 399: 1–5

    Article  CAS  Google Scholar 

  75. Kloppfer W. Intramolecular proton transfer in electronically excited molecules. In: Pitts J N, Hammond G S, Gollnick K, eds. Advances in Photochemistry, Volume 10. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007, 311–358

    Google Scholar 

  76. Lieu V T, Handy C A. The in situ fluorometric determination of alkaline earth metal ions resolved on paper. Analytical Letters, 1974, 7(4): 267–278

    Article  CAS  Google Scholar 

  77. Kilby J S C. Turning potential into realities: the invention of the integrated circuit (Nobel lecture). ChemPhysChem, 2001, 2(8–9): 482–489

    Article  CAS  Google Scholar 

  78. Guliyev R, Ozturk S, Kostereli Z, Akkaya E U. From virtual to physical: integration of chemical logic gates. Angewandte Chemie International Edition, 2011, 50(42): 9826–9831

    Article  CAS  Google Scholar 

  79. de Silva A P. Molecular logic gate arrays. Chemistry, an Asian Journal, 2011, 6(3): 750–766

    Article  CAS  Google Scholar 

  80. Erbas-Cakmak S, Akkaya E U. Cascading of molecular logic gates for advanced functions: a self-reporting, activatable photosensitizer. Angewandte Chemie International Edition, 2013, 52(43): 11364–11368

    Article  CAS  Google Scholar 

  81. McDonnell S O, Hall M J, Allen L T, Byrne A, Gallagher W M, O’Shea D F. Supramolecular photonic therapeutic agents. Journal of the American Chemical Society, 2005, 127(47): 16360–16361

    Article  CAS  Google Scholar 

  82. Ozlem S, Akkaya E U. Thinking outside the silicon box: molecular and logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy. Journal of the American Chemical Society, 2009, 131(1): 48–49

    Article  CAS  Google Scholar 

  83. Raymo F M, Giordani S. Signal communication between molecular switches. Organic Letters, 2001, 3(22): 3475–3478

    Article  CAS  Google Scholar 

  84. Raymo F M, Giordani S. Digital communication through intermolecular fluorescence modulation. Organic Letters, 2001, 3(12): 1833–1836

    Article  CAS  Google Scholar 

  85. de Silva A P, Dixon I M, Gunaratne H Q N, Gunnlaugsson T, Maxwell P R, Rice T E. Integration of logic functions and sequential operation of gates at the molecular-scale. Journal of the American Chemical Society, 1999, 121(6): 1393–1394

    Article  Google Scholar 

  86. Wang L, Li B, Zhang L, Luo Y. Three-input-three-output logic operations based on absorption and fluorescence dual-mode from a thiourea compound. Dalton Transactions, 2013, 42(2): 459–465

    Article  CAS  Google Scholar 

  87. Rurack K. Flipping the light switch ‘on’ — the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2001, 57(11): 2161–2195

    Article  CAS  Google Scholar 

  88. Magri D C, Fava M C, Mallia C J. A sodium-enabled ‘Pourbaix sensor’: a three-input AND logic gate as a ‘lab-on-a-molecule’ for monitoring Na+, pH and pE. Chemical Communications, 2014, 50(8): 1009–1011

    Article  CAS  Google Scholar 

  89. Magri D C, Brown G J, McClean G D, de Silva A P. Communicating chemical congregation: a molecular AND logic gate with three chemical inputs as a “lab-on-a-molecule” prototype. Journal of the American Chemical Society, 2006, 128(15): 4950–4951

    Article  CAS  Google Scholar 

  90. Rout B, Unger L, Armony G, Iron M A, Margulies D. Medication detection by a combinatorial fluorescent molecular sensor. Angewandte Chemie, 2012, 124(50): 12645–12649

    Article  Google Scholar 

  91. Wright A T, Anslyn E V. Differential receptor arrays and assays for solution-based molecular recognition. Chemical Society Reviews, 2006, 35(1): 14–28

    Article  CAS  Google Scholar 

  92. Sharaf M A, Illman D L, Kowalski B R. Chemometrics. New York: Wiley, 1986

    Google Scholar 

  93. Rout B, Milko P, Iron M A, Motiei L, Margulies D. Authorizing multiple chemical passwords by a combinatorial molecular keypad lock. Journal of the American Chemical Society, 2013, 135(41): 15330–15333

    Article  CAS  Google Scholar 

  94. Chen S, Guo Z, Zhu S, Shi W E, Zhu W. A multiaddressable photochromic bisthienylethene with sequence-dependent responses: construction of an INHIBIT logic gate and a keypad lock. ACS Applied Materials & Interfaces, 2013, 5(12): 5623–5629

    Article  CAS  Google Scholar 

  95. Rout B, Motiei L, Margulies D. Combinatorial fluorescent molecular sensors: The road to differential sensing at the molecular level. Synlett, 2014, 25: A–E

    Google Scholar 

  96. Margulies D, Felder C E, Melman G, Shanzer A. A molecular keypad lock: a photochemical device capable of authorizing password entries. Journal of the American Chemical Society, 2007, 129(2): 347–354

    Article  CAS  Google Scholar 

  97. de Silva A P, Gunaratne H Q N, McCoy C P. Direct visual indication of pH windows: ‘off-on-off’ fluorescent PET (photoinduced electron transfer) sensors/switches. Chemical Communications, 1996, (21): 2399–2400

    Google Scholar 

  98. de Silva S A, Zavaleta A, Baron D E, Allam O, Isidor E V, Kashimura N, Percarpio J M. A fluorescent photoinduced electron transfer sensor for cations with an off-on-off proton switch. Tetrahedron Letters, 1997, 38(13): 2237–2240

    Article  Google Scholar 

  99. Pais V F, Lineros M, López-Rodríguez R, El-Sheshtawy H S, Fernández R, Lassaletta J M, Ros A, Pischel U. Preparation and pH-switching of fluorescent borylated arylisoquinolines for multilevel molecular logic. The Journal of Organic Chemistry, 2013, 78(16): 7949–7961

    Article  CAS  Google Scholar 

  100. Callan J F, de Silva A P, Ferguson J, Huxley A J, O’Brien A M. Fluorescent photoionic devices with two receptors and two switching mechanisms: applications to pH sensors and implications for metal ion detection. Tetrahedron, 2004, 60(49): 11125–11131

    Article  CAS  Google Scholar 

  101. Morawetz H. Difficulties in the emergence of the polymer concept — an essay. Angewandte Chemie International Edition, 1987, 26(2): 93–97

    Article  Google Scholar 

  102. Ratner T, Reany O, Keinan E. Encoding and processing of alphanumeric information by chemical mixtures. ChemPhysChem, 2009, 10(18): 3303–3309

    Article  CAS  Google Scholar 

  103. Wu Y, Xie Y, Zhang Q, Tian H, Zhu W, Li A D Q. Quantitative photoswitching in bis(dithiazole) ethene enables modulation of light for encoding optical signals. Angewandte Chemie International Edition, 2014, 53(8): 2090–2094

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Prasanna de Silva.

Additional information

Brian Daly, born and bred in Belfast, Northern Ireland, enjoys running, cycling, swimming and bringing up his two daughters. He is in the first year of his PhD research on switchable receptors. Jue Ling is a second-year PhD researcher in fluorescent molecular logic. He was born in Zhenjiang, Jiangsu province, P.R. China, and counts playing basketball and cooking among his interests. AP de Silva was born in Colombo, Sri Lanka, and plays percussion in an Irish traditional band. He pioneered molecular logic and fluorescent PET (photoinduced electron transfer) sensors. He wrote the book ‘Molecular-logic based Computation’. His collaboration with Roche Diagnostics led to the Optimedical OPTI analyzer for blood electrolytes, the chemistry module of which has sales of 110M · so far.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daly, B., Ling, J. & de Silva, A.P. Information gathering and processing with fluorescent molecules. Front. Chem. Sci. Eng. 8, 240–251 (2014). https://doi.org/10.1007/s11705-014-1432-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1432-z

Keywords

Navigation