Skip to main content

CO2 Conversion to CH4

  • Conference paper
  • First Online:
CO2: A Valuable Source of Carbon

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Methanation is an alternative route to treat CO2, which allows the enhancement of carbon in the molecule, through its conversion to methane. A very wide catalytic system is available to operate the transformation. A review of the materials and their performances is presented together with some industrial applications. These technologies are useful methods to store energy as chemical energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Omae, Catal. Today 115, 332 (2006)

    Article  Google Scholar 

  2. H.D. Gesser, N.R. Hunter, Catal. Today 42, 183 (1998)

    Article  Google Scholar 

  3. G. Centi, S. Perathoner, Greenhouse Gas Sci. Technol. 1, 21 (2011)

    Article  Google Scholar 

  4. M. Aresta, A. Dibenedetto, Dalton Trans. 28, 2975 (2007)

    Article  Google Scholar 

  5. K. Ushikoshi, K. Mori, T. Kubota, T. Watanabe, M. Saito, Appl. Organomet. Chem. 14, 819 (2000)

    Article  Google Scholar 

  6. D. Mignard, M. Sahibzada, J.M. Duthie, H.W. Whittington, Int. J. Hydrogen Energy 28, 455 (2003)

    Article  Google Scholar 

  7. E. Novàk, K. Fodor, T. Szailer, A. Oszkò, A. Erdòhelyi, Top. Catal. 20, 1 (2002)

    Article  Google Scholar 

  8. W. Wang, J. Gong, Chem. Sci. Eng. 5, 2 (2011)

    Google Scholar 

  9. F.J. Martin, W.L. Kubic Jr., A Concept for producing Carbon–Neutral Synthetic Fuels and Chemicals, vol 13. (Los Alamos National Laboratory, LA-UR-07-7897, 2007)

    Google Scholar 

  10. Y. Zhu, S. Zhang, Y. Ye, X. Zhang, L. Wang, W. Zhu, F. Cheng, F. Tao, ACS Catal. 2, 2403 (2012)

    Article  Google Scholar 

  11. A.J. Traynor, R.J. Jensen, Ind. Eng. Chem. Res. 41, 1935 (2002)

    Article  Google Scholar 

  12. S.S. Tan, L. Zou, E. Hu, Catal. Today 115, 269 (2006)

    Article  Google Scholar 

  13. H. Ando, Q. Xu, M. Fujiwara, Y. Matsumura, M. Tanaka, Y. Souma, Catal. Today 45, 229 (1998)

    Article  Google Scholar 

  14. P. Sabatier, J.B. Senderens, Compt. Rend. 134, 514 (1902)

    Google Scholar 

  15. G.G. Binder, R.R. White, Can. J. Chem. Eng. 46(11), 563 (1950)

    Google Scholar 

  16. S. Rieke, Solar Fuels and Power-to-Gas Technologies. CO2 Fuels and Materials 4 Resource and Energy Efficiency, Lyon (F), 27–28 Sept 2012

    Google Scholar 

  17. F. Gutiérrez-Martìn, J.M. Garcìa-De Marìa, A. Bairi, N. Laraqi, Int. J. Hydrogen Energy 34, 8468 (2009)

    Article  Google Scholar 

  18. C. Mansilla, J. Sigurvinsson, A. Bontemps, A. Maréchal, F. Werkoff, Energy 32, 423 (2007)

    Article  Google Scholar 

  19. C. Perkins, A.W. Weimer, Int. J. Hydrogen Energy 29, 1587 (2004)

    Article  Google Scholar 

  20. J.H. Norman, G.E. Besenbruch, D.R. O’Keefe, Thermochemical water-splitting for hydrogen production. GRI-80/0105 (1981)

    Google Scholar 

  21. J.E. Funk, Int. J. Hydrogen Energy 26, 185 (2001)

    Article  Google Scholar 

  22. H. Nakajima, M. Sakurai, K. Ikenoya, G.J. Hwang, S. Higashi, K. Onuki, S. Shimizu, A study on a closed-cycle hydrogen production by thermochemical water-splitting IS process, in Proceeding of the seventh international conference on nuclear engineering, Tokyo, Japan, 1999

    Google Scholar 

  23. D.R. O’Keefe, J.H. Norman, D.G. Williamson, Catal. Rev. Sci. Eng. 22(3), 325 (1980)

    Article  Google Scholar 

  24. V. Barbarossa, S. Brutti, M. Diamanti, S. Sau, G. De Maria, Catalytic thermal decomposition of sulphuric acid in sulphur–iodine cycle for hydrogen production. Int. J. Hydrogen Energy 31, 883–890 (2006)

    Google Scholar 

  25. L.C. Brown, J.E. Funk, S.K. Showalter, High efficiency generation of hydrogen fuel using nuclear power. GA-A23451 Annual Report to the U.S. (Department of Energy 2000)

    Google Scholar 

  26. S. Goldstein, J.M. Borgard, X. Vitart, Int. J. Hydrogen Energy 30, 619 (2005)

    Article  Google Scholar 

  27. S. Shimizu, H. Nakajima, S. Kubo, K. Onuki, G.J. Hwang, S. Higashi, S. Ishiyama, M. Futakawa, I. Ioka, Y.Kurata, N.Akino, M. Sakurai, Nuclear Production of Hydrogen First Information Exchange Meeting. (Paris, France, 2000), p. 248

    Google Scholar 

  28. S. Kasahara, S. Kubo, R. Hino, K. Onuki, M. Nomura, S. Nakao, Int. J. Hydrogen Energy 32, 489 (2007)

    Article  Google Scholar 

  29. T. Schroder, R. Schinke, M. Eharab, K. Yamashitac, J. Phys. Chem. 88, 2776 (1984)

    Article  Google Scholar 

  30. H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, J. Env. Sciences 20, 14 (2008)

    Article  Google Scholar 

  31. C. Stewart, M. Hessami, Energy Conv. Manage. 46, 403 (2005)

    Article  Google Scholar 

  32. S. Plasynski, C. Zhong-Ying, Review of CO2 capture technologies and some improvement opportunities, in Fall Symposium, vol. 45(4) (Washington DC, 2000),pp. 644–649

    Google Scholar 

  33. J.R. Rostrup-Nielsen, K. Pedersen, J. Sehested, Appl. Catal. A 330, 134 (2007)

    Article  Google Scholar 

  34. J.G. McCarty, H. Wise, J. Catal. 57, 406 (1979)

    Google Scholar 

  35. S.J. Choe, H.J. Kang, S.J. Kim, S.B. Park, D.H. Park, D.S. Huh, Bull. Korean Chem. Soc. 26, 11 (2005)

    Google Scholar 

  36. P.K. Bajpai, N.N. Bakhshi, J.F. Mathews, Can. J. Chem. Eng. 60, 613 (1982)

    Article  Google Scholar 

  37. J. Sehested, Catal. Today 111, 103 (2006)

    Article  Google Scholar 

  38. D.E. Peebles, D.W. Goodman, J.M. White, J. Phys. Chem. 87, 4378 (1983)

    Article  Google Scholar 

  39. C.T. Campbell, D.W. Goodman, Surf. Sci. 123, 413 (1982)

    Article  Google Scholar 

  40. T. Szailer, E. Novak, A. Oszko´, A. Erdohelyi, Topics Catal. 46, 79 (2007)

    Google Scholar 

  41. G.D. Weatherbee, C.H. Bartholomew, J. Catal. 68, 67 (1981)

    Article  Google Scholar 

  42. G.D. Weatherbee, C.H. Bartholomew, J. Catal. 77, 460 (1982)

    Article  Google Scholar 

  43. C.K. Vance, C.H. Bartholomew, Appl. Catal. 7, 169 (1983)

    Article  Google Scholar 

  44. T. Van Herwijnen, H. Van Doesburg, W.A. De Jong, J. Catal. 28, 391 (1973)

    Article  Google Scholar 

  45. R.Z.C. van Meerten, J.G. Vollenbroek, M.H.J.M. De Croon, P.F.M.T. Van Nisselrooy, J.W.E. Coenen, Appl. Catal. 3, 29 (1982)

    Article  Google Scholar 

  46. G.M. Pancenkov, V.P. Lebedev, Chemical Kinetics and Catalysis (MIR Publisher, Moscow, 1976)

    Google Scholar 

  47. T. Kai, T. Takahashi, Can. J. Chem. Eng. 66, 433 (1988)

    Article  Google Scholar 

  48. J.N. Dew, R.R. White, C.M. Sliepcevich, Ind. Eng. Chem. 47, 140 (1955)

    Article  Google Scholar 

  49. J.H. Chiang, J.R. Hopper, IEC Prod. Res. Dev. 22, 225 (1983)

    Article  Google Scholar 

  50. T. Ido, T. Kohmura, S. Goto, Reactions of methanol to methane on nickel catalyst. Kagaku Kogaku Ronbunshu 10, 82 (1984)

    Article  Google Scholar 

  51. H. Inoue, M. Funakoshi, J. Chem. Eng. Jpn 17, 602 (1984)

    Article  Google Scholar 

  52. M. Marwood, R. Doepper, A. Renken, Appl. Catal. A 151, 223 (1997)

    Article  Google Scholar 

  53. D.E. Peebles, D.W. Goodman, J.M. White, J. Phys. Chem. 87, 4378 (1983)

    Article  Google Scholar 

  54. J.L. Falconer, A.E. Zagli, J. Catal. 62, 280 (1980)

    Article  Google Scholar 

  55. M. Araki, V. Ponec, J. Catal. 44, 439 (1976)

    Article  Google Scholar 

  56. H. Wise, J.G. McCarty, Surf. Sci. 133, 311 (1983)

    Article  Google Scholar 

  57. J.T. Yates, S.M. Gates, J.N. Russell, Surf. Sci. 164, L839 (1985)

    Article  Google Scholar 

  58. A.L. Lapidus, N.A. Gaidai, N.V. Nekrasov, L.A. Tishkova, Y.A. Agafonov, T.N. Myshenkova, Pet. Sci. Technol. 47, 75 (2007)

    Google Scholar 

  59. F.W. Chang, T.J. Hsiao, J.D. Shih, Ind. Eng. Chem. Res. 37, 3838 (1988)

    Article  Google Scholar 

  60. F.W. Chang, M.T. Tsay, S.P. Liang, Appl. Catal. A 209, 217 (2001)

    Article  Google Scholar 

  61. C.H. Bartholomew, P.B. Pannell, J.L. Butler, J. Catal. 65, 335 (1980)

    Article  Google Scholar 

  62. P.B. Pannell, K.S. Chung, C.H. Bartholomew, J. Catal. 46, 340 (1977)

    Article  Google Scholar 

  63. M. Yamasaki, H. Habazaki, K. Asami, K. Izumiya, K. Hashimoto, Catal. Commun. 7, 24 (2006)

    Article  Google Scholar 

  64. F. Ocampo, B. Louis, A.C. Roger, Appl. Catal. A 369, 90 (2009)

    Article  Google Scholar 

  65. F. Guo, W. Chu, H.Y. Xu, T. Zhang, Chin. J. Chem. 28, 429 (2007)

    MATH  Google Scholar 

  66. F. Solymosi, A. Erdohelyi, J. Mol. Catal. 8, 471 (1980)

    Article  Google Scholar 

  67. F. Solymosi, A. Erdohelyi, T. Bànsàgi, J. Catal. 68, 371 (1981)

    Article  Google Scholar 

  68. D.G. Weatherbee, C.H. Bartholomew, J. Catal. 87, 352 (1984)

    Article  Google Scholar 

  69. Z. Kowalczyk, K. Stolecki, W. Rarńg-Pilecka, E. Miśkiewicz, E. Wilczkowska, Z. Karpińiski, Appl. Catal. A 342, 35 (2008)

    Article  Google Scholar 

  70. L. Luo, S. Li, Y. Zhu, J. Serb. Chem. Soc. 70, 1419 (2005)

    Article  Google Scholar 

  71. M. Kuśmierz, Catal. Today 137, 429 (2008)

    Article  Google Scholar 

  72. F. Solymosi, J. Mol. Catal. 65, 337 (1991)

    Article  Google Scholar 

  73. H.Y. Kim, H.M. Lee, J.N. Park, J. Phys. Chem. 114, 7128 (2010)

    Google Scholar 

  74. J. Kopyscinski, T.J. Schildhauer, S.M.A. Biollaz, Fuel 89, 1763 (2010)

    Article  Google Scholar 

  75. GPSP, Practical experience gained during the first 20 years of operation of the great plains gasification plant and implications for future projects. Technical report, Dakota gasification company prepared for US Department of Energy, Office of Fossil Energy (2006)

    Google Scholar 

  76. M. Sudiro, A. Bertucco, in Synthetic Natural Gas (SNG) from Coal and Biomass: a Survey of Existing Process Technologies, Open Issues and Perspectives Chap. 5. Gas natural ISBN 978-953-307-112-1, (Sciyo 2010)

    Google Scholar 

  77. H. Topsoe, From solid fuels to substitute natural gas (SNG) using TREMP. Technical report, 2008, http://www.topsoe.com

  78. J.W. van Hal, C. van der Meijden, A. van der Drift, The ECN Biomass to SNG Process. Technical report, ECN-L–09-088 (2009)

    Google Scholar 

  79. Stephan R, Power-to-Gas Technology: The Missing Link in Renewable Energy Systems. (Ecosummit, Berlin 2012)

    Google Scholar 

  80. M. Specht, F. Baumgart, B. Feigl, V. Frick, B. Sturmer, U. Zuberbuhler, M. Sterner, G. Waldstein, Storing renewable energy in the natural gas grid. FVEE, AEE Topics (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Barbarossa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this paper

Cite this paper

Barbarossa, V., Bassano, C., Deiana, P., Vanga, G. (2013). CO2 Conversion to CH4 . In: Falco, M., Iaquaniello, G., Centi, G. (eds) CO2: A Valuable Source of Carbon. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5119-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5119-7_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5118-0

  • Online ISBN: 978-1-4471-5119-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics