Skip to main content
Log in

Perioperative and oncologic outcomes of single-port versus conventional robotic-assisted partial nephrectomy: an evidence-based analysis of comparative outcomes

  • Review Article
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

This study aims to evaluate the effectiveness and safety between single-port robotic-assisted partial nephrectomy (da Vinci SP system) with conventional robotic-assisted partial nephrectomy (da Vinci Si or Xi system). We systematically searched PubMed, Science Embase, Web of Science and Cochrane Library database for articles comparing single-port robotic-assisted partial nephrectomies (SP-RAPN) and conventional robotic-assisted partial nephrectomy (Con-RAPN) till September 2022. The principal outcomes included perioperative outcomes, complications, and oncologic outcomes were evaluated. A total of 586 patients were included in six studies. There were no significant differences in operative time (p = 0.19), transfusion rates (p = 0.11), off-clamp (p = 0.32), total perioperative milligram morphine equivalents (MME) (p = 0.44), intraoperative complications (p = 0.60), major complications (p = 0.84), overall complications (p = 0.90), positive surgical margins (PSM) (p = 0.75) and local recurrence (p = 0.50) between SP-RAPN and Con-RAPN. In addition, the marginal results were recorded in length of hospital stay subgroup (WMD − 0.35 days, 95% CI − 0.70, 0.01; p = 0.06) and blood loss (WMD − 27.16 ml, 95% CI − 56.90, 2.58; p = 0.07). However, SP-RAPN had longer warm ischemia time compared to Con-RAPN (WMD 3.42 min, 95% CI 1.71, 5.13; p < 0.0001). The results of this study demonstrated that SP-RAPN provided similar effectiveness and safety to Con-RAPN, while SP-RAPN might be associated with a marginally shorter length of hospital stay and less blood loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Raw data available at request.

References

  1. Fetahu A, Çuni X, Haxhiu I, Çuni L, Manxhuka S, Shahini L (2019) Open nephron sparing surgery for T1a renal tumors: clinical experience in an emerging country. Gulf J Oncolog 1:60–65

    CAS  PubMed  Google Scholar 

  2. Urbieta Anza A, LlarenaIbarguren R, Tomás ZabalaEgurrola JA, Gutierrez Zurimendi G, Iturregui Del Pozo AM, Arruza Echevarria A (2018) Renal cell carcinoma in von Hippel-Lindau disease. Nephron sparing surgery. Arch Esp Urol 71:757–764

    PubMed  Google Scholar 

  3. Gill IS, Kavoussi LR, Lane BR et al (2007) Comparison of 1,800 laparoscopic and open partial nephrectomies for single renal tumors. J Urol 178:41–46. https://doi.org/10.1016/j.juro.2007.03.038

    Article  PubMed  Google Scholar 

  4. MacLennan S, Imamura M, Lapitan MC et al (2012) Systematic review of perioperative and quality-of-life outcomes following surgical management of localised renal cancer. Eur Urol 62:1097–1117. https://doi.org/10.1016/j.eururo.2012.07.028

    Article  PubMed  Google Scholar 

  5. Gul ZG, Tam A, Badani KK (2020) Robotic partial nephrectomy: the current status. Indian J Urol 36:16–20. https://doi.org/10.4103/iju.IJU_174_19

    Article  PubMed  PubMed Central  Google Scholar 

  6. Grivas N, Kalampokis N, Larcher A et al (2019) Robot-assisted versus open partial nephrectomy: comparison of outcomes. A systematic review. Minerva Urol Nefrol 71:113–120. https://doi.org/10.23736/s0393-2249.19.03391-5

    Article  PubMed  Google Scholar 

  7. Dobbs RW, Halgrimson WR, Talamini S, Vigneswaran HT, Wilson JO, Crivellaro S (2020) Single-port robotic surgery: the next generation of minimally invasive urology. World J Urol 38:897–905. https://doi.org/10.1007/s00345-019-02898-1

    Article  PubMed  Google Scholar 

  8. Bertolo R, Garisto J, Gettman M, Kaouk J (2018) Novel system for robotic single-port surgery: feasibility and state of the art in urology. Eur Urol Focus 4:669–673. https://doi.org/10.1016/j.euf.2018.06.004

    Article  PubMed  Google Scholar 

  9. Lenfant L, Sawczyn G, Aminsharifi A et al (2021) Pure single-site robot-assisted radical prostatectomy using single-port versus multiport robotic radical prostatectomy: a single-institution comparative study. Eur Urol Focus 7:964–972. https://doi.org/10.1016/j.euf.2020.10.006

    Article  PubMed  Google Scholar 

  10. Li K, Yu X, Yang X et al (2022) Perioperative and oncologic outcomes of single-port vs multiport robot-assisted radical prostatectomy: a meta-analysis. J Endourol 36:83–98. https://doi.org/10.1089/end.2021.0210

    Article  PubMed  Google Scholar 

  11. Kaouk J, Garisto J, Eltemamy M, Bertolo R (2019) Pure single-site robot-assisted partial nephrectomy using the SP surgical system: initial clinical experience. Urology 124:282–285. https://doi.org/10.1016/j.urology.2018.11.024

    Article  PubMed  Google Scholar 

  12. Shukla D, Small A, Mehrazin R, Palese M (2021) Single-port robotic-assisted partial nephrectomy: initial clinical experience and lessons learned for successful outcomes. J Robot Surg 15:293–298. https://doi.org/10.1007/s11701-020-01106-2

    Article  PubMed  Google Scholar 

  13. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213. https://doi.org/10.1097/01.sla.0000133083.54934.ae

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sterne JA, Hernán MA, Reeves BC et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919. https://doi.org/10.1136/bmj.i4919

    Article  PubMed  PubMed Central  Google Scholar 

  16. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sterne JA, Gavaghan D, Egger M (2000) Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol 53:1119–1129. https://doi.org/10.1016/s0895-4356(00)00242-0

    Article  CAS  PubMed  Google Scholar 

  18. Lau J, Ioannidis JP, Terrin N, Schmid CH, Olkin I (2006) The case of the misleading funnel plot. BMJ 333:597–600. https://doi.org/10.1136/bmj.333.7568.597

    Article  PubMed  PubMed Central  Google Scholar 

  19. Okhawere KE, Beksac AT, Wilson MP et al (2022) A Propensity-matched comparison of the perioperative outcomes between single-port and multi-port robotic assisted partial nephrectomy: a report from the Single Port Advanced Robotics Consortium (SPARC). J Endourol. https://doi.org/10.1089/end.2022.0115

    Article  PubMed  Google Scholar 

  20. Kim J, Na JC, Lee JS, Jang WS, Han WK (2022) Clinical implications for da Vinci SP partial nephrectomy in high-complexity tumors: propensity score-matching analysis. J Endourol 36:1290–1295. https://doi.org/10.1089/end.2022.0203

    Article  PubMed  Google Scholar 

  21. Palacios AR, Morgantini LS, Trippel R, Crivellaro S, Abern MR (2022) Comparison of perioperative outcomes between retroperitoneal single-port and multi-port robot-assisted partial nephrectomies. J Endourol. https://doi.org/10.1089/end.2022.0346

    Article  PubMed  Google Scholar 

  22. Harrison R, Ahmed M, Billah M et al (2022) Single-port versus multiport partial nephrectomy: a propensity-score-matched comparison of perioperative and short-term outcomes. J Robot Surg. https://doi.org/10.1007/s11701-022-01415-8

    Article  PubMed  Google Scholar 

  23. Glaser ZA, Burns ZR, Fang AM et al (2022) Single- versus multi-port robotic partial nephrectomy: a comparative analysis of perioperative outcomes and analgesic requirements. J Robot Surg 16:695–703. https://doi.org/10.1007/s11701-021-01271-y

    Article  PubMed  Google Scholar 

  24. Na JC, Lee HH, Yoon YE et al (2020) True single-site partial nephrectomy using the sp surgical system: feasibility, comparison with the Xi single-site platform, and step-by-step procedure guide. J Endourol 34:169–174. https://doi.org/10.1089/end.2019.0528

    Article  PubMed  Google Scholar 

  25. Wilson CA, Aminsharifi A, Sawczyn G et al (2020) Outpatient extraperitoneal single-port robotic radical prostatectomy. Urology 144:142–146. https://doi.org/10.1016/j.urology.2020.06.029

    Article  PubMed  Google Scholar 

  26. Abaza R, Murphy C, Bsatee A, Brown DH Jr, Martinez O (2021) Single-port robotic surgery allows same-day discharge in majority of cases. Urology 148:159–165. https://doi.org/10.1016/j.urology.2020.08.092

    Article  PubMed  Google Scholar 

  27. Lenfant L, Sawczyn G, Kim S, Aminsharifi A, Kaouk J (2021) Single-institution cost comparison: single-port versus multiport robotic prostatectomy. Eur Urol Focus 7:532–536. https://doi.org/10.1016/j.euf.2020.06.010

    Article  PubMed  Google Scholar 

  28. Fagotti A, Bottoni C, Vizzielli G et al (2011) Postoperative pain after conventional laparoscopy and laparoendoscopic single site surgery (LESS) for benign adnexal disease: a randomized trial. Fertil Steril 96:255–9.e2. https://doi.org/10.1016/j.fertnstert.2011.04.006

    Article  PubMed  Google Scholar 

  29. Lee HH, Na JC, Yoon YE, Rha KH, Han WK (2020) Robot-assisted laparoendoscopic single-site upper urinary tract surgery with da Vinci Xi surgical system: initial experience. Investig Clin Urol 61:323–329. https://doi.org/10.4111/icu.2020.61.3.323

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lenfant L, Kim S, Aminsharifi A, Sawczyn G, Kaouk J (2021) Floating docking technique: a simple modification to improve the working space of the instruments during single-port robotic surgery. World J Urol 39:1299–1305. https://doi.org/10.1007/s00345-020-03307-8

    Article  PubMed  Google Scholar 

  31. Martinez O, Murphy C, Bsatee A, Brown Dh Jr, Abaza R (2021) Impact of surgeon-controlled suction during robotic prostatectomy to reduce dependence on bedside assistance. J Endourol 35:1163–1167. https://doi.org/10.1089/end.2020.1059

    Article  PubMed  Google Scholar 

  32. Greco F, Autorino R, Rha KH et al (2013) Laparoendoscopic single-site partial nephrectomy: a multi-institutional outcome analysis. Eur Urol 64:314–322. https://doi.org/10.1016/j.eururo.2013.01.025

    Article  PubMed  Google Scholar 

  33. Florence CS, Zhou C, Luo F, Xu L (2016) The economic burden of prescription opioid overdose, abuse, and dependence in the United States, 2013. Med Care 54:901–906. https://doi.org/10.1097/mlr.0000000000000625

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vigneswaran HT, Schwarzman LS, Francavilla S, Abern MR, Crivellaro S (2020) A comparison of perioperative outcomes between single-port and multiport robot-assisted laparoscopic prostatectomy. Eur Urol 77:671–674. https://doi.org/10.1016/j.eururo.2020.03.031

    Article  PubMed  Google Scholar 

  35. Zhou J, Liu ZH, Cao DH et al (2021) Retroperitoneal or transperitoneal approach in robot-assisted partial nephrectomy, which one is better? Cancer Med 10:3299–3308. https://doi.org/10.1002/cam4.3888

    Article  PubMed  PubMed Central  Google Scholar 

  36. Simhan J, Smaldone MC, Tsai KJ et al (2012) Perioperative outcomes of robotic and open partial nephrectomy for moderately and highly complex renal lesions. J Urol 187:2000–2004. https://doi.org/10.1016/j.juro.2012.01.064

    Article  PubMed  Google Scholar 

  37. Malkoç E, Maurice MJ, Kara Ö et al (2019) Predictors of positive surgical margins in patients undergoing partial nephrectomy: a large single-center experience. Turk J Urol 45:17–21. https://doi.org/10.5152/tud.2018.57767

    Article  PubMed  PubMed Central  Google Scholar 

  38. Laganosky DD, Filson CP, Master VA (2017) Surgical margins in nephron-sparing surgery for renal cell carcinoma. Curr Urol Rep 18:8. https://doi.org/10.1007/s11934-017-0651-5

    Article  PubMed  Google Scholar 

  39. Komninos C, Shin TY, Tuliao P et al (2014) Robotic partial nephrectomy for completely endophytic renal tumors: complications and functional and oncologic outcomes during a 4-year median period of follow-up. Urology 84:1367–1373. https://doi.org/10.1016/j.urology.2014.08.012

    Article  PubMed  Google Scholar 

  40. Fang AM, Saidian A, Magi-Galluzzi C, Nix JW, Rais-Bahrami S (2020) Single-port robotic partial and radical nephrectomies for renal cortical tumors: initial clinical experience. J Robot Surg 14:773–780. https://doi.org/10.1007/s11701-020-01053-y

    Article  PubMed  Google Scholar 

  41. Vazquez-Martul D, Iglesias-Alvarado J, Altez-Fernandez C, Chantada-Abal V (2022) Single-port retroperitoneoscopic partial nephrectomy: Initial description and standardisation of technique. J Minim Access Surg. https://doi.org/10.4103/jmas.jmas_109_22

    Article  Google Scholar 

Download references

Funding

This work was supported by the regulatory mechanism of AMPK in ischemic-reperfusion injury and fibrosis in renal transplantation (CY2015-YJRC08); Gansu Provincial Education Department outstanding graduate “innovation star” project (2021CXZX-154); the Open Foundation of Gansu Key Laboratory of Functional Genomics and Molecular Diagnostics; Gansu Province Intellectual Property Planning project (21ZSCQ012); the Second Hospital of Lanzhou University "Cuiying Science and Technology Innovation" project (CY2021-QN-A20).

Author information

Authors and Affiliations

Authors

Contributions

LK: protocol development, data collection and management, data analysis and manuscript writing. CS: protocol development, data collection and management, data analysis and manuscript writing. YL: protocol development, data management and manuscript writing. WC: data management, data analysis and manuscript writing.

Corresponding author

Correspondence to Li Yang.

Ethics declarations

Conflict of interest

All the authors have nothing to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Supplementary file2 (DOCX 62 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Kp., Chen, Sy., Wang, Cy. et al. Perioperative and oncologic outcomes of single-port versus conventional robotic-assisted partial nephrectomy: an evidence-based analysis of comparative outcomes. J Robotic Surg 17, 765–777 (2023). https://doi.org/10.1007/s11701-022-01491-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-022-01491-w

Keywords

Navigation