Skip to main content
Log in

Solvent extractions and spectrophotometric protocols for measuring the total anthocyanin, phenols and antioxidant content in plums

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Total monomeric anthocyanins from six commercial plum varieties were extracted using two protocols, viz methanol/water extraction through end-over-end shaking and ethanol/water extraction in a shaking water bath; adapted from the Australian Wine Research Institute (AWRI) standard method. Anthocyanins were determined using the Association of Official Analytical Chemists (AOAC) standard protocol and a modification of the AWRI method. The mean relative standard deviation was found to be similar between methods, at 13.5% and 9.9%, respectively. On average, the anthocyanin concentrations given by the AWRI method were 27% higher than those obtained using the AOAC standard method. This was attributed to the AWRI method not correcting for haze or matrix interference, but estimating the anthocyanin concentration from the absorbance at a single wavelength. Anthocyanin measurements on the two extractions using the same measurement protocol supported this, indicating that the methanolic extracts gave a higher anthocyanin yield than the ethanolic extracts. Furthermore, HPLC profiling of the anthocyanin content demonstrated significantly more anthocyanins were extracted through the methanol extraction protocol. The methanol/water extraction protocol and AOAC standard method are much simpler to perform than the AWRI method and appear to be at least as precise. Thus this extraction and spectrophotometric protocol is well suited to future work on plum matrices. The extraction method is also more suitable for the subsequent photometric and/or HPLC determination of phenolic and total antioxidant contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad R, Potter D, Southwick S (2004) Identi® cation and characterization of plum and pluot cultivars by microsatellite markers. J Hortic Sci Biotechnol 79:164–169

    Google Scholar 

  • Amico V, Napoli E, Renda A, Ruberto G, Spatafora C, Tringali C (2004) Constituents of grape pomace from the Sicilian cultivar 'Nerello Mascalese'. Food Chem 88:599–607

    CAS  Google Scholar 

  • Andersen Ø, Francis G (2009) Techniques of pigment identification. In: Davies K (ed) Annual plant reviews, plant pigments and their manipulation, vol 14. Wiley, Oxford, pp 293–341

    Google Scholar 

  • Apak R, Gorinstein S, Böhm V, Schaich KM, Özyürek M, Güçlü K (2013) Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl Chem 85:957–998. https://doi.org/10.1351/pac-rep-12-07-15

    Article  CAS  Google Scholar 

  • Baharfar R, Azimi R, Mohseni M (2015) Antioxidant and antibacterial activity of flavonoid-, polyphenol-and anthocyanin-rich extracts from Thymus kotschyanus boiss & hohen aerial parts. J Food Sci Technol 52:6777–6783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartosińska E, Buszewska-Forajta M, Siluk D (2016) GC–MS and LC–MS approaches for determination of tocopherols and tocotrienols in biological and food matrices. J Pharm Biomed Anal 127:156–169. https://doi.org/10.1016/j.jpba.2016.02.051

    Article  CAS  PubMed  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  • Brito A, Areche C, Sepúlveda B, Kennelly E, Simirgiotis M (2014) Anthocyanin characterization, total phenolic quantification and antioxidant features of some Chilean edible berry extracts. Molecules 19:10936–10955

    PubMed  PubMed Central  Google Scholar 

  • Bureau S, Cozzolino D, Clark CJ (2019) Contributions of Fourier-transform mid infrared (FT-MIR) spectroscopy to the study of fruit and vegetables: a review. Postharvest Biol Technol 148:1–14

    CAS  Google Scholar 

  • Castaneda-Ovando A, de Lourdes P-H, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    CAS  Google Scholar 

  • Chen S, Zhang F, Ning J, Liu X, Zhang Z, Yang S (2015) Predicting the anthocyanin content of wine grapes by NIR hyperspectral imaging. Food Chem 172:788–793

    CAS  PubMed  Google Scholar 

  • Cheng GW, Breen PJ (1991) Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J Am Soc Hortic Sci 116:865–869. https://doi.org/10.21273/jashs.116.5.865

    Article  CAS  Google Scholar 

  • Cozzolino D (2015) The role of visible and infrared spectroscopy combined with chemometrics to measure phenolic compounds in grape and wine samples. Molecules 20:726–737

    PubMed  Google Scholar 

  • Crisosto CH, Crisosto GM, Echeverria G, Puy J (2007) Segregation of plum and pluot cultivars according to their organoleptic characteristics. Postharvest Biol Technol 44:271–276

    CAS  Google Scholar 

  • da Silva FL, Escribano-Bailón MT, Alonso JJP, Rivas-Gonzalo JC, Santos-Buelga C (2007) Anthocyanin pigments in strawberry. LWT Food Sci Technol 40:374–382

    Google Scholar 

  • Dong T, Han R, Yu J, Zhu M, Zhang Y, Gong Y, Li Z (2019) Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis, L.). Food Chem 271:18–28

    CAS  PubMed  Google Scholar 

  • Eliopoulos PA, Potamitis I, Kontodimas DC (2016) Estimation of population density of stored grain pests via bioacoustic detection. Crop Prot 85:71–78

    Google Scholar 

  • Elisia I, Hu C, Popovich DG, Kitts DD (2007) Antioxidant assessment of an anthocyanin-enriched blackberry extract. Food Chem 101:1052–1058

    CAS  Google Scholar 

  • Fanning K, Edwards D, Netzel M, Stanley R, Netzel G, Russell D, Topp B (2013) Increasing anthocyanin content in Queen Garnet plum and correlations with in-field measures. In: X international symposium on plum and prune genetics, breeding and pomology, pp 97–104

  • Fanning KJ, Topp B, Russell D, Stanley R, Netzel M (2014) Japanese plums (Prunus salicina Lindl.) and phytochemicals–breeding, horticultural practice, postharvest storage, processing and bioactivity. J Sci Food Agric 94:2137–2147

    CAS  PubMed  Google Scholar 

  • Felgines C, Sv T, Gonthier M-P, Texier O, Scalbert A, Lamaison J-L, Rémésy C (2003) Strawberry anthocyanins are recovered in urine as glucuro-and sulfoconjugates in humans. J Nutr 133:1296–1301

    CAS  PubMed  Google Scholar 

  • Fernández-López JA, Almela L, Muñoz JA, Hidalgo V, Carreño J (1998) Dependence between colour and individual anthocyanin content in ripening grapes. Food Res Int 31:667–672

    Google Scholar 

  • Ferretti G, Bacchetti T, Belleggia A, Neri D (2010) Cherry antioxidants: from farm to table. Molecules 15:6993–7005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo-González M, Martínez-Carballo E, Cancho-Grande B, Santiago J, Martínez M, Simal-Gándara J (2012) Pattern recognition of three Vitis vinifera L. red grapes varieties based on anthocyanin and flavonol profiles, with correlations between their biosynthesis pathways. Food Chem 130:9–19

    Google Scholar 

  • Fuleki T, Francis F (1968a) Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J Food Sci 33:72–77

    CAS  Google Scholar 

  • Fuleki T, Francis F (1968b) Quantitative methods for anthocyanins. 2. Determination of total anthocyanin and degradation index for cranberry juice. J Food Sci 33:78–83

    CAS  Google Scholar 

  • Galvano F, La LF, Vitaglione P, Fogliano V, Vanella L, Felgines C (2007) Bioavailability, antioxidant and biological properties of the natural free-radical scavengers cyanidin and related glycosides. Annali dell'Istituto superiore di sanita 43:382–393

    CAS  PubMed  Google Scholar 

  • Ghozlen NB, Cerovic ZG, Germain C, Toutain S, Latouche G (2010) Non-destructive optical monitoring of grape maturation by proximal sensing. Sensors 10:10040–10068

    PubMed  Google Scholar 

  • Giusti MM, Wrolstad RE (1996) Characterization of red radish anthocyanins. J Food Sci 61:322–326

    CAS  Google Scholar 

  • Giusti MM, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr Protoc Food Anal Chem. https://doi.org/10.1002/0471142913.faf0102s00

    Article  Google Scholar 

  • González-Flores D et al (2011) Ingestion of Japanese plums (Prunus salicina Lindl. cv. Crimson Globe) increases the urinary 6-sulfatoxymelatonin and total antioxidant capacity levels in young, middle-aged and elderly humans: nutritional and functional characterization of their content. J Food Nutr Res 50(4):229–236

  • Hangun-Balkir Y, McKenney ML (2012) Determination of antioxidant activities of berries and resveratrol. Green Chem Lett Rev 5:147–153

    CAS  Google Scholar 

  • Hong V, Wrolstad RE (1990) Use of HPLC separation/photodiode array detection for characterization of anthocyanins. J Agric Food Chem 38:708–715

    CAS  Google Scholar 

  • Horbowicz M, Kosson R, Grzesiuk A, Dębski H (2008) Anthocyanins of fruits and vegetables-their occurrence, analysis and role in human nutrition. Veg Crops Res Bull 68:5–22

    Google Scholar 

  • Hosseinian FS, Li W, Beta T (2008) Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem 109:916–924

    CAS  PubMed  Google Scholar 

  • Inácio MRC, de Lima KMG, Lopes VG, Pessoa JDC, de Almeida Teixeira GH (2013) Total anthocyanin content determination in intact açaí (Euterpe oleracea Mart.) and palmitero-juçara (Euterpe edulis Mart.) fruit using near infrared spectroscopy (NIR) and multivariate calibration. Food Chem 136:1160–1164

    PubMed  Google Scholar 

  • Jackman R, Smith J (1996) Anthocyanins and betalains. In: Natural food colorants. Springer, pp 244–309

  • Jackman RL, Yada RY, Tung MA (1987) A review: separation and chemical properties of anthocyanins used for their qualitative and quantitative analysis. J Food Biochem 11:279–308

    CAS  Google Scholar 

  • Jiang T et al (2019) Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH. Food Chem 274:460–470

    CAS  PubMed  Google Scholar 

  • Johnson J, Collins T, Power A, Chandra S, Portman D, Blanchard C, Naiker M (2020a) Antioxidative properties and macrochemical composition of five commercial mungbean varieties in Australia. Legume Sci 2:e27. https://doi.org/10.1002/leg3.27

    Article  CAS  Google Scholar 

  • Johnson J, Collins T, Skylas D, Naiker M (2019) ATR-MIR: a valuable tool for the rapid assessment of biochemically active compounds in grains. In: 69th Australasian grain science conference, Carlton, 27–29 August 2019. pp 73–79

  • Johnson J, Collins T, Skylas D, Quail K, Blanchard C, Naiker M (2020b) Profiling the varietal antioxidative content and macrochemical composition in Australian faba beans (Vicia faba L). Legume Sci 2:e28. https://doi.org/10.1002/leg3.28

    Article  CAS  Google Scholar 

  • Kamei H, Hashimoto Y, Koide T, Kojima T, Hasegawa M (1998) Anti-tumor effect of methanol extracts from red and white wines. Cancer Biother Radiopharm 13:447–452

    CAS  PubMed  Google Scholar 

  • Lee J, Durst RW, Wrolstad RE (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int 88:1269–1278

    CAS  PubMed  Google Scholar 

  • Lee J, Finn CE (2007) Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J Sci Food Agric 87:2665–2675

    CAS  PubMed  Google Scholar 

  • Lee J, Rennaker C, Wrolstad RE (2008) Correlation of two anthocyanin quantification methods: HPLC and spectrophotometric methods. Food Chem 110:782–786

    CAS  Google Scholar 

  • Markakis PC (1989) Food colorants: anthocyanins AU—Francis, F.J. Crit Rev Food Sci Nutr 28:273–314. https://doi.org/10.1080/10408398909527503

    Article  Google Scholar 

  • Mazza G, Francis F (1995) Anthocyanins in grapes and grape products. Crit Rev Food Sci Nutr 35:341–371

    CAS  PubMed  Google Scholar 

  • Moldovan B, David L, Chişbora C, Cimpoiu C (2012) Degradation kinetics of anthocyanins from European cranberrybush (Viburnum opulus L.) fruit extracts. Effects of temperature, pH and storage solvent. Molecules 17:11655–11666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naiker M (2001) β-Damascenone-yielding precursor(s) from Cabernet Sauvignon grapes. S Pac J Nat Appl Sci 19:11–17. https://doi.org/10.1071/SP01003

    Article  Google Scholar 

  • Netzel M et al (2012) Urinary excretion of antioxidants in healthy humans following Queen Garnet plum juice ingestion: a new plum variety rich in antioxidant compounds. J Food Biochem 36:159–170

    CAS  Google Scholar 

  • Nicoue EE, Savard S, Belkacemi K (2007) Anthocyanins in wild blueberries of Quebec: extraction and identification. J Agric Food Chem 55:5626–5635

    CAS  PubMed  Google Scholar 

  • Núñez V, Monagas M, Gomez-Cordovés M, Bartolomé B (2004) Vitis vinifera L. cv. Graciano grapes characterized by its anthocyanin profile. Postharvest Biol Technol 31:69–79

    Google Scholar 

  • Orak HH (2007) Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape cultivars and their correlations. Sci Hortic 111:235–241

    CAS  Google Scholar 

  • Özbilgin S, Acıkara ÖB, Akkol EK, Süntar I, Keleş H, İşcan GS (2018) In vivo wound-healing activity of Euphorbia characias subsp. wulfenii: isolation and quantification of quercetin glycosides as bioactive compounds. J Ethnopharmacol 224:400–408. https://doi.org/10.1016/j.jep.2018.06.015

    Article  CAS  PubMed  Google Scholar 

  • Piga A, Del Caro A, Corda G (2003) From plums to prunes: influence of drying parameters on polyphenols and antioxidant activity. J Agric Food Chem 51:3675–3681. https://doi.org/10.1021/jf021207+

    Article  CAS  PubMed  Google Scholar 

  • Prasain JK, Barnes S, Wyss JM (2018) Analyzing ingredients in dietary supplements and their metabolites. In: Polyphenols: mechanisms of action in human health and disease. Elsevier, pp 337–346

  • Rapisarda P, Fanella F, Maccarone E (2000) Reliability of analytical methods for determining anthocyanins in blood orange juices. J Agric Food Chem 48:2249–2252

    CAS  PubMed  Google Scholar 

  • Scott JW, Cort WM, Harley H, Parrish DR, Saucy G (1974) 6-Hydroxychroman-2-carboxylic acids: novel antioxidants. J Am Oil Chem Soc 51:200–203

    CAS  Google Scholar 

  • Sinelli N, Spinardi A, Di Egidio V, Mignani I, Casiraghi E (2008) Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy. Postharvest Biol Technol 50:31–36

    CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Smith P (2017) Measuring total anthocyanins (colour) in red grape berries. Australian Wine Research Institute, Urrbrae

    Google Scholar 

  • Sultana B, Anwar F, Ashraf M (2009) Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14:2167–2180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Yao J, Huang S, Long X, Wang J, García-García E (2009) Antioxidant activity of polyphenol and anthocyanin extracts from fruits of Kadsura coccinea (Lem.) AC Smith. Food Chem 117:276–281

    CAS  Google Scholar 

  • Sun S, Kadouh HC, Zhu W, Zhou K (2016) Bioactivity-guided isolation and purification of α-glucosidase inhibitor, 6-O-d-glycosides, from Tinta Cão grape pomace. J Funct Foods 23:573–579. https://doi.org/10.1016/j.jff.2016.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomás-Barberán FA, Gil MI, Cremin P, Waterhouse AL, Hess-Pierce B, Kader AA (2001) HPLC−DAD−ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J Agric Food Chem 49:4748–4760. https://doi.org/10.1021/jf0104681

    Article  CAS  PubMed  Google Scholar 

  • Truong V, Hu Z, Thompson R, Yencho G, Pecota K (2012) Pressurized liquid extraction and quantification of anthocyanins in purple-fleshed sweet potato genotypes. J Food Compos Anal 26:96–103

    CAS  Google Scholar 

  • Tuccio L, Remorini D, Pinelli P, Fierini E, Tonutti P, Scalabrelli G, Agati G (2011) Rapid and non-destructive method to assess in the vineyard grape berry anthocyanins under different seasonal and water conditions. Aust J Grape Wine Res 17:181–189

    CAS  Google Scholar 

  • Usenik V, Štampar F, Veberič R (2009) Anthocyanins and fruit colour in plums (Prunus domestica L.) during ripening. Food Chem 114:529–534. https://doi.org/10.1016/j.foodchem.2008.09.083

    Article  CAS  Google Scholar 

  • Wang J, Kalt W, Sporns P (2000) Comparison between HPLC and MALDI-TOF MS analysis of anthocyanins in highbush blueberries. J Agric Food Chem 48:3330–3335

    CAS  PubMed  Google Scholar 

  • Wang Y, Chen X, Zhang Y, Chen X (2012) Antioxidant activities and major anthocyanins of myrobalan plum (Prunus cerasifera Ehrh.). J Food Sci 77:C388–C393

    CAS  PubMed  Google Scholar 

  • Wigmore SM, Naiker M, Bean DC (2016) Antimicrobial activity of extracts from native plants of temperate Australia. Pharmacogn Commun 6(2):80–84. https://doi.org/10.5530/pc.2016.2.5

    Article  Google Scholar 

  • Wrolstad R (1976) Color and pigment analyses in fruit products. Station Bulletin, Agricultural Experiment Station, Oregon State University, p 624

  • Wrolstad RE, Durst RW, Lee J (2005) Tracking color and pigment changes in anthocyanin products. Trends Food Sci Technol 16:423–428

    CAS  Google Scholar 

  • Wu X, Prior RL (2005) Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem 53:2589–2599. https://doi.org/10.1021/jf048068b

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhai W (2010) Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innov Food Sci Emerg Technol 11:169–176

    CAS  Google Scholar 

  • You Q, Wang B, Chen F, Huang Z, Wang X, Luo PG (2011) Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem 125:201–208

    CAS  Google Scholar 

  • Zhang Z, Kou X, Fugal K, McLaughlin J (2004) Comparison of HPLC methods for determination of anthocyanins and anthocyanidins in bilberry extracts. J Agric Food Chem 52:688–691

    CAS  PubMed  Google Scholar 

  • Zhang Z, Pang X, Xuewu D, Ji Z, Jiang Y (2005) Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chem 90:47–52

    Google Scholar 

  • Zude M, Pflanz M, Spinelli L, Dosche C, Torricelli A (2011) Non-destructive analysis of anthocyanins in cherries by means of Lambert-Beer and multivariate regression based on spectroscopy and scatter correction using time-resolved analysis. J Food Eng 103:68–75

    CAS  Google Scholar 

Download references

Funding

This study was funded in part by a 2018-19 Summer Research Scholarship from Central Queensland University awarded to one of the authors (JJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Johnson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, J., Collins, T., Walsh, K. et al. Solvent extractions and spectrophotometric protocols for measuring the total anthocyanin, phenols and antioxidant content in plums. Chem. Pap. 74, 4481–4492 (2020). https://doi.org/10.1007/s11696-020-01261-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-020-01261-8

Keywords

Navigation