Skip to main content
Log in

Preparation by different methods and analytical characterization of gadolinium-doped ceria

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The present work reports the influence of chemical synthesis on structural, morphological and optical properties of gadolinium-doped ceria (GDC) with analytical characterization of synthesized specimens. GDC powders with Gd content of 10, 15 and 20 mol% were synthesized by aqueous sol–gel and sol–gel combustion methods using glycerol as complexing agent and fuel. The phase purity and structural features of obtained powders were evaluated using X-ray diffraction analysis and Raman spectroscopy. These studies confirmed that crystallization of GDC occurs into cubic fluorite-type crystal structure. Morphological features as well as optical properties of GDC powders were determined to be strongly dependent on the synthesis method. To confirm chemical composition of prepared samples, spectrophotometric approach for the determination of Ce and Gd in GDC samples was suggested. Relative standard deviation values for Ce and Gd were in the range of 1.5–4.1 and 2.0–5.6%, respectively. The obtained results demonstrated that the suggested analytical procedure can be successfully used for the analysis of GDC specimens with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akbari-Fakhrabadi A, Avila RE, Carrasco HE, Ananthakumar S, Mangalaraja RV (2012) Combustion synthesis of NiO–Ce0.9Gd0.1O1.95 nanocomposite anode and its electrical characteristics of semi-cell configured SOFC assembly. J Alloys Compd 541:1–5. doi:10.1016/j.jallcom.2012.06.036

    Article  CAS  Google Scholar 

  • Artini C, Pani M, Carnasciali MM, Buscaglia MT, Plaisier JR, Costa GA (2015) Structural features of Sm- and Gd-doped ceria studied by synchrotron X-ray diffraction and μ-Raman spectroscopy. Inorg Chem 54(8):4126–4137. doi:10.1021/acs.inorgchem.5b00395

    Article  CAS  Google Scholar 

  • Aškrabić S, Dohčević-Mitrović ZD, Radović M, Šćepanović M, Popović ZV (2009) Phonon–phonon interactions in Ce0.85Gd0.15O2−δ nanocrystals studied by Raman spectroscopy. J Raman Spectrosc 40(6):650–655. doi:10.1002/jrs.2177

    Article  Google Scholar 

  • Bruix A, Neyman KM (2016) Modeling ceria-based nanomaterials for catalysis and related applications. Catal Lett. doi:10.1007/s10562-016-1799-1

    Google Scholar 

  • Cho C-K, Choi B-H, Lee K-T (2012) Effect of Co alloying on the electrochemical performance of Ni–Ce0.8Gd0.2O1.9 anodes for hydrocarbon-fueled solid oxide fuel cells. J Alloys Compd 541:433–439. doi:10.1016/j.jallcom.2012.07.012

    Article  CAS  Google Scholar 

  • Chourashiya MG, Patil JY, Pawar SH, Jadhav LD (2008) Studies on structural, morphological and electrical properties of Ce1−x Gd x O2−(x/2). Mater Chem Phys 109(1):39–44. doi:10.1016/j.matchemphys.2007.10.028

    Article  CAS  Google Scholar 

  • Coduri M, Scavini M, Pani M, Carnasciali MM, Klein H, Artini C (2017) From nano to microcrystals: effects of different synthetic pathways on the defect architecture in heavily Gd-doped ceria. Phys Chem Chem Phys 19(18):11612–11630. doi:10.1039/C6CP08173H

    Article  CAS  Google Scholar 

  • Guo M, Lu J, Wu Y, Wang Y, Luo M (2011) UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir 27(7):3872–3877. doi:10.1021/la200292f

    Article  CAS  Google Scholar 

  • Gupta A, Das S, Neal CJ, Seal S (2016) Controlling the surface chemistry of cerium oxide nanoparticles for biological applications. J Mater Chem B 4(19):3195–3202. doi:10.1039/C6TB00396F

    Article  CAS  Google Scholar 

  • Hong YS, Kim SH, Kim WJ, Yoon HH (2011) Fabrication and characterization GDC electrolyte thin films by e-beam technique for IT-SOFC. Curr Appl Phys 11(5, Supplement):S163–S168. doi:10.1016/j.cap.2011.03.071

    Article  Google Scholar 

  • Horlait D, Claparède L, Clavier N, Szenknect S, Dacheux N, Ravaux J, Podor R (2011) Stability and structural evolution of CeIV1–x LnIII x O2–x/2 solid solutions: a coupled μ-Raman/XRD approach. Inorg Chem 50(15):7150–7161. doi:10.1021/ic200751m

    Article  CAS  Google Scholar 

  • Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ion 83(1):1–16. doi:10.1016/0167-2738(95)00229-4

    Article  CAS  Google Scholar 

  • Janoš P, Ederer J, Pilařová V, Henych J, Tolasz J, Milde D, Opletal T (2016) Chemical mechanical glass polishing with cerium oxide: effect of selected physico-chemical characteristics on polishing efficiency. Wear 362–363:114–120. doi:10.1016/j.wear.2016.05.020

    Google Scholar 

  • Jiang J, Shen W, Hertz JL (2012) Fabrication of epitaxial zirconia and ceria thin films with arbitrary dopant and host atom composition. Thin Solid Films 522:66–70. doi:10.1016/j.tsf.2012.09.013

    Article  CAS  Google Scholar 

  • Korobko R, Chen C-T, Kim S, Cohen SR, Wachtel E, Yavo N, Lubomirsky I (2012) Influence of Gd content on the room temperature mechanical properties of Gd-doped ceria. Scripta Materialia 66(3–4):155–158. doi:10.1016/j.scriptamat.2011.10.027

    Article  CAS  Google Scholar 

  • Kosacki I, Petrovsky V, Anderson HU, Colomban P (2002) Raman spectroscopy of nanocrystalline ceria and zirconia thin films. J Am Ceram Soc 85(11):2646–2650. doi:10.1111/j.1151-2916.2002.tb00509.x

    Article  CAS  Google Scholar 

  • Kröger FA (1964) The chemistry of imperfect crystals. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Kudo T, Obayashi H (1975) Oxygen ion conduction of the fluorite-type Ce1−x Lnx O2−x /2 (Ln = Lanthanoid element). J Electrochem Soc 122(1):142–147. doi:10.1149/1.2134143

    Article  CAS  Google Scholar 

  • Lee M-Y, Song M-K, Kim J-S, Seo J-H, Kim M-H (2014) Synthesis of single-phase Gd-doped ceria nanopowders by radio frequency thermal plasma treatment. J Am Ceram Soc 97(5):1379–1382. doi:10.1111/jace.12918

    Article  CAS  Google Scholar 

  • Lin H-L, Wu C-Y, Chiang R-K (2010) Facile synthesis of CeO2 nanoplates and nanorods by [1 0 0] oriented growth. J Colloid Interface Sci 341(1):12–17. doi:10.1016/j.jcis.2009.04.047

    Article  CAS  Google Scholar 

  • López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol Gel Sci Technol 61(1):1–7. doi:10.1007/s10971-011-2582-9

    Article  Google Scholar 

  • McBride JR, Hass KC, Poindexter BD, Weber WH (1994) Raman and X-ray studies of Ce1−x RExO2−y, where RE = La, Pr, Nd, Eu, Gd, and Tb. J Appl Phys 76(4):2435–2441. doi:10.1063/1.357593

    Article  CAS  Google Scholar 

  • Nakajima A, Yoshihara A, Ishigame M (1994) Defect-induced Raman spectra in doped CeO2. Phys Rev B 50(18):13297–13307. doi:10.1103/PhysRevB.50.13297

    Article  CAS  Google Scholar 

  • Nanda HS (2016) Surface modification of promising cerium oxide nanoparticles for nanomedicine applications. RSC Adv 6(113):111889–111894. doi:10.1039/C6RA23046F

    Article  CAS  Google Scholar 

  • Steele BCH (2000) Appraisal of Ce1−y Gd y O2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ion 129(1–4):95–110. doi:10.1016/S0167-2738(99)00319-7

    Article  CAS  Google Scholar 

  • Wang Z, Kale GM, Ghadiri M (2012) Sol-gel production of Ce0.8Gd0.2O1.9 nanopowders using sucrose and pectin as organic precursors. J Am Ceram Soc 95(9):2863–2868. doi:10.1111/j.1551-2916.2012.05303.x

    Article  CAS  Google Scholar 

  • Zarkov A, Stanulis A, Salkus T, Kezionis A, Jasulaitiene V, Ramanauskas R, Tautkus S, Kareiva A (2016) Synthesis of nanocrystalline gadolinium doped ceria via sol–gel combustion and sol–gel synthesis routes. Ceram Int 42(3):3972–3988. doi:10.1016/j.ceramint.2015.11.066

    Article  CAS  Google Scholar 

  • Zarkov A, Stanulis A, Mikoliunaite L, Katelnikovas A, Jasulaitiene V, Ramanauskas R, Tautkus S, Kareiva A (2017) Chemical solution deposition of pure and Gd-doped ceria thin films: structural, morphological and optical properties. Ceram Int 43(5):4280–4287. doi:10.1016/j.ceramint.2016.12.070

    Article  CAS  Google Scholar 

  • Zhang S, Li J, Guo X, Liu L, Wei H, Zhang Y (2016) Nanostructured composite films of ceria nanoparticles with anti-UV and scratch protection properties constructed using a layer-by-layer strategy. Appl Surf Sci 382:316–322. doi:10.1016/j.apsusc.2016.04.151

    Article  CAS  Google Scholar 

  • Zhou YC, Rahaman MN (1993) Hydrothermal synthesis and sintering of ultrafine CeO2 powders. J Mater Res 8(7):1680–1686. doi:10.1557/jmr.1993.1680

    Article  CAS  Google Scholar 

  • Živković LS, Popić JP, Jegdić BV, Dohčević-Mitrović Z, Bajat JB, Mišković-Stanković VB (2014) Corrosion study of ceria coatings on AA6060 aluminum alloy obtained by cathodic electrodeposition: effect of deposition potential. Surf Coat Technol 240:327–335. doi:10.1016/j.surfcoat.2013.12.048

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksej Zarkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarkov, A., Mikoliunaite, L., Katelnikovas, A. et al. Preparation by different methods and analytical characterization of gadolinium-doped ceria. Chem. Pap. 72, 129–138 (2018). https://doi.org/10.1007/s11696-017-0264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0264-y

Keywords

Navigation