Skip to main content
Log in

Fischer–Tropsch reaction over a Co2-Ni-Mn/SiO2 nanocatalyst prepared by thermal decomposition of a new precursor

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This study was prepared for the first time the trimetallic nanocatalyst Co2-Ni-Mn/SiO2 by thermal decomposition of) [Ni(H2O)5Co(dipic)2].2H2O + [Mn(H2O)5Co(dipic)2] 2H2O)/SiO2, to study the Fischer–Tropsch reaction for conversion of the synthesis gas to light olefins. The catalytic performance of Co2-Ni-Mn/SiO2 as a nanocatalyst prepared by thermal decomposition of an inorganic precursor was compared to that of the trimetallic nanocatalysts Co2-Ni-Mn/SiO2 as reference nanocatalysts prepared by impregnation and co-precipitation. The characterization of precursor and nanocatalyst were confirmed by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) specific surface area, and X-ray diffraction (XRD). The Fischer–Tropsch reaction for all nanocatalysts of Co2-Ni-Mn/SiO2 was studied at 280–360 °C at a gas hourly space velocity of 3600 h−1, and a H2/CO molar ratio of 1:1 at atmospheric pressure. The results showed that the Co2-Ni-Mn/SiO2 nanocatalyst prepared by thermal decomposition of an inorganic complex exhibited the higher activity than the other nanocatalysts and showed maximum selectivity to light olefins at 360 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed R, Jamil R, Ansari MS (2014) Synthesis and characterization of ternary Pt- Ni-M/C (M=Cu, Fe, Ce, Mo, W) nano-catalysts for low temperature fuel cells. IOP Conf Ser Mater Sci Eng 60:012044. doi:10.1088/1757-899x/60/1/012044

    Article  Google Scholar 

  • Allaedini G, Tasirin SM, Aminayi P (2015) Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation. Chem Pap. doi:10.1515/chempap-2015-0190

    Google Scholar 

  • Ansari A, Kaushik A (2010) Synthesis and optical properties of nanostructured Ce(OH)4. J Semicond 31:033001. doi:10.1088/1674-4926/31/3/033001

    Article  Google Scholar 

  • Bartholomew CH (2003) History of cobalt catalyst design for FTS, Proceedings of the National Spring Meeting of the American Institute of Chemical Engineers (AIChE’03), New Orleans, March–April

  • Belosludov RV, Sakahara S, Yajima K, Takami S, Kubo M (2002) Combinatorial computational chemistry approach as a promising method for design of Fischer–Tropsch catalysts based on Fe and Co. Fuel Process Technol 189:245

    CAS  Google Scholar 

  • Choudhary T, Goodman D (2006) Methane decomposition: production of hydrogen and carbon filaments. Catalysis 19:164–183

    Article  CAS  Google Scholar 

  • Davis BH (2001) Fischer–Tropsch synthesis: current mechanism and futuristic needs. Fuel Process Technol 71:157–166

    Article  CAS  Google Scholar 

  • Dry ME (2002) The Fischer–Tropsch process. Catal. Today. 71:227–241

    Article  CAS  Google Scholar 

  • Eshraghi A, Mirzaei AR, Atashi H (2015) Kinetics of the Fischer–Tropsch reaction in fixed-bed reactor over a nano-structured Fe-Co-Ce catalyst supported with SiO2. J Nat Gas Sci Eng 26:940

    Article  CAS  Google Scholar 

  • Farzanfar J, Rezvani AR (2015) Inorganic complex precursor route for preparation of high-temperature Fischer–Tropsch synthesis Ni-Co nanocatalysts. Res Chem Intermed 41:8975

    Article  CAS  Google Scholar 

  • Gonzalez-Cortes SL, Rodulfo-Baechler SMA, Oliveros A (2002) Synthesis of light alkenes on manganese promoted iron and iron-cobalt Fischer–Tropsch catalysts. React Kinet Catal Lett 75:3–12

    Article  CAS  Google Scholar 

  • Khodakov AY, Chu W, Fongarland P (2007) Advance in the development of novel cobalt Fischer–Tropsch catalyst for synthesis of long-chain hydrocarbons and clean. Fuels Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  • Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10(6):3739–3758

    Article  CAS  Google Scholar 

  • Li T, Yang Y, Tao Z, Zhang C, Xiang H, Wang Y (2009) Study on an iron–manganese Fischer–Tropsch synthesis catalyst prepared from ferrous sulfate. Technology 90:1247

    CAS  Google Scholar 

  • Li Y, Li D, Wang G (2011) Methane decomposition to CO x-free hydrogen and nano-carbon material on group 8–10 base metal catalysts. Cataly Today 162(1):1

    Article  CAS  Google Scholar 

  • Liu Y, Teng BT, Guoa XH, Li Y, Chang J, Haoa LX, Wang Y, Xiang HW, Li YW (2007) Effect of reaction conditions on the catalytic performance of Fe-Mn catalyst for Fischer-Tropsch synthesis. J Mol Catal A Chem 272:182

    Article  CAS  Google Scholar 

  • Kirillova MV, Guedes da Silva MFC, Kirillov AM, Fraústo da Silva JJR, Pombeiro AJL (2007) 3D hydrogen bonded heteronuclear CoII, NiII, CuII and ZnII aqua complexes derived from dipicolinic acid. Inorganica Chimca Acta 360:506

    Article  CAS  Google Scholar 

  • Miroliaee A, Salehirad AR, Rezvani AR (2015) Activation of metallic open-cell foams. Mater Chem Phys 151:312

    Article  CAS  Google Scholar 

  • Mirzaei AA, Vahid S, Feyzi M (2009) Fischer–Tropsch synthesis over iron manganese catalysts: effect of preparation and operating conditions on catalyst performance. Adv Chem Phys. doi:10.1155/2009/151489 (article ID 151489)

    Google Scholar 

  • Park SJ, Bae JW, Jung GI, Ha KS, Jun KW, Lee YJ, Park HG (2012) Crucial factors for catalyst aggregation and deactivation on Co/Al2O3 in a slurry-phase Fisher-Tropsch synthesis. J. Appl Catal A 413:310–321

    Article  Google Scholar 

  • Pełech I, Narkiewicz U, Kaczmarek A, Je˛drzejewska A (2014) Preparation and characterization of multi-walled carbon nanotubes grown on transition metal catalysts. Pol J Chem Technol 16(1):117–122

    Google Scholar 

  • Ranjan A, Moholkar VS (2011) Biobutanol: science, engineering, and economics. Int J Energy Res 36(3):277

    Article  Google Scholar 

  • Razmara Z, Rezvani AR, Saravani H (2015) Synthesis and characterization of new nanostructure complex [Co(dipic)2Ni(OH2)6] as a precursor for the synthesis of NiCo2O4 nanoparticles. J Chem Pharm Res 7(12):170

    CAS  Google Scholar 

  • Reddy BM, Kumar GM, Ganesh I, Khan A (2006) Vapour phase hydrogenation of cinnamaldehyde over silica supported transition metal-based bimetallic catalysts. J Mol Catal A: Chem 247:80–87

    Article  CAS  Google Scholar 

  • Salehi Rad AR, khoshgouei M, Rezvani AR (2011) Water gas shift reaction over Zn– Ni/SiO2 catalyst prepared from [Zn(H2O)6]2[Ni(NCS)6]·H2O/SiO2 precursor. J Mol Catal A Chem 344:11–17

    Article  Google Scholar 

  • Tian L, Huo CF, Cao DB, Yang Y, Xu J, Wu BS, Xiang HW, Xu YY, Li YW (2010) Effects of reaction conditions on iron catalyzed Fisher–Tropsch synthesis: Kinetic Mornte Carlo study. J Mol Struc THEOCHEM 941:30–35

    Article  CAS  Google Scholar 

  • Tre´panier M, Dala AK, Abatzoglou N (2010) Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: role of nanoparticle size on reducibility, activity, and selectivity in Fischer–Tropsch reactions. Appl Catal A 374:79–86

    Article  Google Scholar 

  • Van der Laan GP, Beenackers AACM (1999) Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal Rev 41:255–318

    Article  Google Scholar 

  • Wu H, Pantaleo G, La Parola V, Venezia AM, Collard X, Aprile C, Liotta LF (2014) Bi- and trimetallic Ni catalysts over Al2O3 and Al2O3-MOx (M = Ce or Mg) oxides for methane dry reforming: au and Pt additive effects. Appl Catal B 156:350–361

    Article  Google Scholar 

  • Yang Y, Xiang HW, Tian L, Wang H, Zhang CH, Tao ZC, Yxu Y, Zhong B, Li YW (2005) Structure and Fisher-Tropsch performance of iron-manganese catalyst incorporated with SiO2. Appl Catal A 284:105–122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of Zabol and Sistan and Baluchestan for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Razmara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razmara, Z., Rezvani, A.R. & Saravani, H. Fischer–Tropsch reaction over a Co2-Ni-Mn/SiO2 nanocatalyst prepared by thermal decomposition of a new precursor. Chem. Pap. 71, 849–856 (2017). https://doi.org/10.1007/s11696-016-0100-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0100-9

Keywords

Navigation