Skip to main content
Log in

Inorganic complex precursor route for preparation of high-temperature Fischer–Tropsch synthesis Ni–Co nanocatalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The effect of the preparation method on the structural properties and activity of Ni–Co catalysts in the Fischer–Tropsch synthesis has been explored. Impregnation, co-precipitation and a novel method, thermal decompositions of inorganic precursor complex, procedures were applied for the generation of the Ni-promoted alumina- or silica-supported cobalt catalysts. The precursors and the catalysts that were obtained from their calcination were characterized by powder X-ray diffraction, thermal gravimetric analysis, Brunauer–Emmett–Teller specific surface area measurements, scanning electron microscopy and Fourier transform infrared spectroscopy. The catalytic performance in Fischer–Tropsch synthesis was investigated for all calcined catalysts in the temperature interval from 280 to 360 °C. The Ni–Co/Al2O3 catalyst prepared by thermal decomposition of [Ni(H2O)6][Co(dipic)2]·2H2O/Al2O3 as a precursor performed optimally for the conversion of synthesis gas to light olefins. The outcomes revealed that this novel procedure is more advantageous than impregnation and co-precipitation methods for the preparation of effective and durable cobalt catalysts for Fischer–Tropsch synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. G. Prieto, P. Concepcion, R. Murciano, A. Martinez, J. Catal. 302, 37 (2013)

    Article  CAS  Google Scholar 

  2. A.A. Mirzaei, S. Shahriari, M. Arsalanfar, J. Nat. Gas. Sci. Eng. 3, 537 (2011)

    Article  CAS  Google Scholar 

  3. F. Fazlollahi, M. Sarkari, A. Zare, A.A. Mirzaei, H. Atashi, J. Ind. Eng. Chem. 18, 1223 (2012)

    Article  CAS  Google Scholar 

  4. A. Zare, A. Zare, M. Shiva, A.A. Mirzaei, J. Ind. Eng. Chem. 19, 1858 (2013)

    Article  CAS  Google Scholar 

  5. A.A. Mirzaei, B. Shirzadi, H. Atashi, M. Mansouri, J. Ind. Eng. Chem. 18, 1515 (2012)

    Article  CAS  Google Scholar 

  6. S.J. Park, J.W. Bae, G.I. Jung, K.S. Ha, K.W. Jun, Y.J. Lee, H.G. Park, Appl. Catal. A 413–414, 310 (2012)

    Article  Google Scholar 

  7. J.Y. Park, Y.J. Lee, P.R. Karandikar, K.W. Jun, K.S. Ha, H.G. Park, Appl. Catal. A 411–412, 15 (2012)

    Article  Google Scholar 

  8. D.I. Enache, B. Rebours, M.R. Auberger, R. Revel, J. Catal. 205, 346 (2002)

    Article  CAS  Google Scholar 

  9. J. Zhang, J. Chen, J. Ren, Y. Sun, Appl. Catal. A 243, 121 (2003)

    Article  CAS  Google Scholar 

  10. S. Sun, N. Tsubaki, K. Fujimoto, Appl. Catal. A 202, 121 (2000)

    Article  CAS  Google Scholar 

  11. K. Jalama, N.J. Coville, H. Xiong, D. Hildebrandt, D. Glasser, S. Taylor, A. Carley, J.A. Anderson, G.J. Hutchings, Appl. Catal. A 395, 1 (2011)

    Article  CAS  Google Scholar 

  12. S. Storsæter, B. Tøtdal, J.C. Walmsley, B.S. Tanem, A. Holmen, J. Catal. 236, 139 (2005)

    Article  Google Scholar 

  13. Y. Zhang, Y. Liu, G. Yang, S. Sun, N. Tsubaki, Appl. Catal. A 321, 79 (2007)

    Article  CAS  Google Scholar 

  14. V.A.D.L.P. O’Shea, M.C. Álvarez-Galván, J.M. Campos-Martín, J.L.G. Fierro, Appl. Catal. A 326, 65 (2007)

  15. A.A. Khassin, T.M. Yurieva, G.N. Kustova, I.S. Itenberg, M.P. Demeshkina, T.A. Krieger, L.M. Plyasova, G.K. Chermashentseva, V.N. Parmon, J. Mol. Catal. A: Chem. 168, 193 (2001)

    Article  CAS  Google Scholar 

  16. B. Ernst, S. Libs, P. Chaumette, A. Kiennemann, Appl. Catal. A 186, 145 (1999)

    Article  CAS  Google Scholar 

  17. M. Feyzi, A.A. Mirzaei, J. Fuel Chem. Technol. 40, 1435 (2012)

    Article  CAS  Google Scholar 

  18. S. Lögdberg, M. Lualdi, S. Järås, J.C. Walmsley, E.A. Blekkan, E. Rytter, A. Holmen, J. Catal. 274, 84 (2010)

    Article  Google Scholar 

  19. J. Farzanfar, A.R. Rezvani, C. R. Chimie. (2014). doi:10.1016/j.crci.2014.05.007

    Google Scholar 

  20. A. Miroliaee, A.R. Salehirad, A.R. Rezvani, Mater. Chem. Phys. 151, 312 (2015)

    Article  CAS  Google Scholar 

  21. M.V. Kirillova, M.F.C.G. DaSilva, A.M. Kirillov, J.J.R.F. DaSilva, A.J.L. Pombeiro, Inorg. Chim. Acta 360, 506 (2007)

    Article  CAS  Google Scholar 

  22. M.V. Kirillova, A.M. Kirillov, M.F.C.G. DaSilva, M.N. Kopylovich, J.J.R.F. DaSilva, A.J.L. Pombeiro, Inorg. Chim. Acta 361, 1728 (2008)

    Article  CAS  Google Scholar 

  23. A.R. Parent, S. Vedachalam, ChP Landee, M.M. Turnbull, J. Coord. Chem. 61, 93 (2008)

    Article  CAS  Google Scholar 

  24. H. Aghabozorg, M. Ghadermazi, B. Nakhjavan, F. Manteghi, J. Chem. Crystallogr. 38, 135 (2008)

    Article  CAS  Google Scholar 

  25. A. Moghimi, M. Ranjbar, H. Aghabozorg, F. Jalali, M. Shamsipur, K.K. Chadha, Can. J. Chem. 80, 1687 (2002)

    Article  CAS  Google Scholar 

  26. Sh Sheshmani, H. Aghabozorg, F. Mohammad, R. Panah, G. Alizadeh, B. Kickelbick, A. Nakhjavan, F. Moghimi, H.R. Ramezanipour, Z. Aghabozorg, Anorg. Allg. Chem. 632, 469 (2006)

    Article  CAS  Google Scholar 

  27. H. Aghabozorg, J.A. Gharamaleki, Sh Daneshvar, M. Ghadermazi, H.R. Khavasi, Acta Cryst. E64, m187 (2008)

    Google Scholar 

  28. A.C. Gonzalez-Baro, R. Pis-Diez, O.E. Piro, B.S. Parajon-Costa, Polyhedron 27, 502 (2008)

    Article  CAS  Google Scholar 

  29. C. Yenikaya, M. Poyraz, M. Sari, F. Demirci, H. Ilkimen, O. Buyukgungor, Polyhedron 28, 3526 (2009)

    Article  CAS  Google Scholar 

  30. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edn. (Wiley-Interscience, New York, 1997)

    Google Scholar 

  31. Z. Vargova, V. Zeleoak, I. Cisaova, K. Gyoryova, Thermochim. Acta 423, 149 (2004)

    Article  CAS  Google Scholar 

  32. L. Mao, Y. Wang, Y. Qi, M. Cao, C. Hu, J. Mol. Struct. 688, 197 (2004)

    Article  CAS  Google Scholar 

  33. I. Uçar, B. Karabulut, A. Bulut, Büyükgüngoro. J. Mol. Struct. 834–836, 336 (2007)

    Article  Google Scholar 

  34. M. Devereux, M. McCann, V. Leon, V. McKee, R.J. Ball, Polyhedron 21, 1063 (2002)

    Article  CAS  Google Scholar 

  35. W.B. White, V.G. Keramidas, Spectrochim. Acta 28, 501 (1972)

    Article  CAS  Google Scholar 

  36. D.L. Wood, E.M. Rabinovich, J. Non-Cryst, Solids 107, 199 (1989)

    CAS  Google Scholar 

  37. M. Yamame, Sol-Gel Technology for Thin Films (Noyes Publications, New Jersey, 1989)

    Google Scholar 

  38. G. Cordoba, R. Arroyo, J.L.G. Fierro, M.J. Viniegra, J. Solid State Chem. 123, 93 (1996)

    Article  CAS  Google Scholar 

  39. T.C. Sheng, S. Lang, B.A. Morrow, I.D. Gay, J. Catal. 148, 341 (1994)

    Article  CAS  Google Scholar 

  40. E.M. Fixman, M.C. Abello, O.F. Gorriz, L.A. Arrúa, Appl. Catal. A 319, 111 (2007)

    Article  CAS  Google Scholar 

  41. R.M. Almeida, T.A. Guiton, C.G. Pantano, J. Non-Cryst, Solids 121, 193 (1990)

    CAS  Google Scholar 

  42. N.K. Renuka, A.V. Shijina, A.K. Praveen, Mater. Lett. 82, 42 (2012)

    Article  CAS  Google Scholar 

  43. M.G. Ma, J.F. Zhu, Mater. Lett. 63, 881 (2009)

    Article  CAS  Google Scholar 

  44. N.P. Damayanti, J. Sol-Gel. Sci. Technol. 56, 47 (2010)

    Article  CAS  Google Scholar 

  45. C. He, N. Zhao, C. Shi, X. Du, J. Li, Mater. Lett. 61, 4940 (2007)

    Article  CAS  Google Scholar 

  46. P. Li, J. Liu, N. Nag, P.A. Crozier, J. Catal. 262, 73 (2009)

    Article  CAS  Google Scholar 

  47. A.K. Dalai, B.H. Davis, Appl. Catal. A 348, 1 (2008)

    Article  CAS  Google Scholar 

  48. L. Tian, C.F. Huo, D.B. Cao, Y. Yang, J. Xu, B.S. Wu, H.W. Xiang, Y.Y. Xu, Y.W. Li, J. Mol. Struct. Theochem 941, 30 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the University of Sistan and Baluchestan (USB) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Rezvani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzanfar, J., Rezvani, A.R. Inorganic complex precursor route for preparation of high-temperature Fischer–Tropsch synthesis Ni–Co nanocatalysts. Res Chem Intermed 41, 8975–9001 (2015). https://doi.org/10.1007/s11164-015-1942-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-1942-4

Keywords

Navigation