Skip to main content

Advertisement

Log in

Polypyrrole composites with carbon materials for supercapacitors

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Supercapacitors fill the gap between batteries and conventional solid state and electrolytic capacitors. Polypyrrole (PPy) is a very important electrode material for supercapacitors. However, the repeated volume changes usually damage PPy structure and result in PPy poor stability during a long-term charging/discharging process. PPy/carbon material composites were prepared to overcome the defects of pure PPy electrodes, and significant enhancement for the specific capacitance, charging/discharging rate and electrodes stability was demonstrated thereafter. The development of composite electrodes based on PPy and carbon materials is reviewed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

PPy:

Polypyrrole

EDLCs:

Electrical double-layer capacitors

ECs:

Electrochemical pseudocapacitors

AC:

Activated carbon

CNTs:

Carbon nanotubes

CFs:

Carbon fibers

CA:

Carbon aerogels

GP:

Graphene

PVSn :

Polyvinylsulfonate

PSSn :

Polystyrenesulfonate

DS :

Dodecylsulfate

NS :

1-Naphthalenesulfonate

COP:

Chemical oxidation polymerization

EOP:

Electrochemical oxidation polymerization

VA-CNTs:

Vertically aligned CNTs

MWNTs:

Multi-walled carbon nanotubes

CVD:

Chemical vapor deposition

SWNTs:

Single-walled carbon nanotubes

PPy/P-CNTs:

Polypyrrole/plasma-activated CNTs

CTAB:

Cetyltrimethylammonium bromide

CFP:

Carbon fibers paper

PECVD:

Chemical vapor deposition

EPD:

Electrochemical pulse deposition

N-AC-MWNTs:

Nitrogen-doped AC-coated MWCNTs

GO:

Graphene oxide

RGO:

Reduced graphene oxide

SG:

Sulfonated graphene

MG/PPy:

Macroporous graphene/polypyrrole

GP/PA:

Graphene/polypyrrole aerogel

EPD:

Electrophoretic deposition

FSSC:

Fiber-shaped supercapacitors

PVA/H2SO4 :

Polyvinyl alcohol/H2SO4

NG/PPy:

N-doped graphene/polypyrrole

PPy-NFs:

Polypyrrole nanofibers

PPy-CNTs:

Polypyrrole-coated carbon nanotubes

PPy/P(DMcT)/CFs:

Polypyrrole/poly 2,5-dimercapto-1,3,4-thiadiazole/carbon fibers

N-CNFs:

Nitrogen-doped carbon nanofibers

PPy/CCB:

Polypyrrole/conductive carbon black

GO/CNF:

Graphene oxide/carbon nanofiber films

CNF/GP/PPy:

Foam carbon nanofiber/graphene/polypyrrole

References

  • An H, Wang Y, Wang X, Zheng L, Wang X, Yi L, Zhang X (2010) Polypyrrole/carbon aerogel composite materials for supercapacitor. J Power Sources 195(19):6964–6969. doi:10.1016/j.jpowsour.2010.04.074

    Article  CAS  Google Scholar 

  • An B, Xu S, Li L, Tao J, Huang F, Geng X (2013) Carbon nanotubes coated with a nitrogen-doped carbon layer and its enhanced electrochemical capacitance. J Mater Chem A 1(24):7222–7228. doi:10.1039/c3ta10830a

    Article  CAS  Google Scholar 

  • Aphale A, Maisuria K, Mahapatra MK, Santiago A, Singh P and Patra P (2015) Hybrid electrodes by in-situ integration of graphene and carbon-nanotubes in polypyrrole for supercapacitors. Sci Reports 5. doi:10.1038/srep14445

  • Aradilla D, Gaboriau D, Bidan G, Gentile P, Boniface M, Dubal D, Sadki S (2015) An innovative 3-D nanoforest heterostructure made of polypyrrole coated silicon nanotrees for new high performance hybrid micro-supercapacitors. J Mater Chem A 3(26):13978–13985. doi:10.1039/c5ta03435c

    Article  CAS  Google Scholar 

  • Arcila-Velez MR, Roberts ME (2014) Redox solute doped polypyrrole for high-charge capacity polymer electrodes. Chem Mater 26(4):1601–1607. doi:10.1021/cm403630h

    Article  CAS  Google Scholar 

  • Ata MS, Zhitomirsky I (2015) Colloidal methods for the fabrication of carbon nanotube-manganese dioxide and carbon nanotube-polypyrrole composites using bile acids. J Colloid Interface Sci 454:27–34. doi:10.1016/j.jcis.2015.05.014

    Article  CAS  Google Scholar 

  • Baronetto D, Krstajić N, Trasatti S (1994) Reply to “note on a method to interrelate inner and outer electrode areas” by H. Vogt. Electro Acta 39(16):2359–2362. doi:10.1016/0013-4686(94)E0158-K

    Article  CAS  Google Scholar 

  • Biswas S, Drzal LT (2010) Multi layered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22(20):5667–5671. doi:10.1021/cm101132g

    Article  CAS  Google Scholar 

  • Bora C, Dolui SK (2014) Interfacial synthesis of polypyrrole/graphene composites and investigation of their optical, electrical and electrochemical properties. Polym Int 63(8):1439–1446. doi:10.1002/pi.4635

    Article  CAS  Google Scholar 

  • Bora C, Sharma J, Dolui S (2014) Polypyrrole/Sulfonated graphene composite as electrode material for supercapacitor. J Phys Chem C 118(51):29688–29694. doi:10.1021/jp511095s

    Article  CAS  Google Scholar 

  • Borchardt L, Oschatz M, Kaskel S (2014) Tailoring porosity in carbon materials for supercapacitor applications. Mater Horiz 1(2):157–168. doi:10.1039/C3MH00112A

    Article  CAS  Google Scholar 

  • Brownson DAC, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sources 196(11):4873–4885. doi:10.1016/j.jpowsour.2011.02.022

    Article  CAS  Google Scholar 

  • Cai J, Niu H, Li Z, Du Y, Cizek P, Xie Z, Lin T (2015a) High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers. ACS appl mater interfaces 7(27):14946–14953. doi:10.1021/acsami.5b03757

    Article  CAS  Google Scholar 

  • Cai X, Hansen RV, Zhang L, Li B, Poh CK, Lim SH, Shen Z (2015b) Binary metal sulfides and polypyrrole on vertically aligned carbon nanotube arrays/carbon fiber paper as high-performance electrodes. J Mater Chem A 3(44):22043–22052. doi:10.1039/c5ta05961e

    Article  CAS  Google Scholar 

  • Cao J, Wang Y, Chen J, Li X, Walsh FC, Ouyang J-H, Zhou Y (2015) Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. J Mater Chem A 3(27):14445–14457. doi:10.1039/c5ta02920a

    Article  CAS  Google Scholar 

  • Chandra A, Roberts AJ, Lam How Yee E, Slade RC (2009) Nanostructured oxides for energy storage applications in batteries and supercapacitors. Pure Appl Chem 81(8):1489–1498. doi:10.1351/PAC-CON-08-08-20

    Article  CAS  Google Scholar 

  • Chen S, Zhitomirsky I (2013) Influence of dopants and carbon nanotubes on polypyrrole electropolymerization and capacitive behavior. Mater Lett 98:67–70. doi:10.1016/j.matlet.2013.01.123

    Article  CAS  Google Scholar 

  • Chen S, Zhitomirsky I (2014) Polypyrrole coated carbon nanotubes for supercapacitors, prepared using indigo carmine as a dispersant and dopant. Mater Lett 135:47–50. doi:10.1016/j.matlet.2014.07.113

    Article  CAS  Google Scholar 

  • Chen L-F, Zhang X-D, Liang H-W, Kong M, Guan Q-F, Chen P, Yu S-H (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8):7092–7102. doi:10.1021/nn302147s

    Article  CAS  Google Scholar 

  • Chen Z, Yu D, Xiong W, Liu P, Liu Y, Dai L (2014) Graphene-based nanowire supercapacitors. Langmuir 30(12):3567–3571. doi:10.1021/la500299s

    Article  CAS  Google Scholar 

  • Chen H, Zeng S, Chen M, Zhang Y, Li Q (2015a) Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors. Carbon 92:271–296. doi:10.1016/j.carbon.2015.04.010

    Article  CAS  Google Scholar 

  • Chen Y, Du L, Yang P, Sun P, Yu X, Mai W (2015b) Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. J Power Sources 287:68–74. doi:10.1016/j.jpowsour.2015.04.026

    Article  CAS  Google Scholar 

  • Chen Y, Han M, Tang Y, Bao J, Li S, Lan Y, Dai Z (2015c) Polypyrrole-polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible, all-solid-state supercapacitors. Chem Commun 51(62):12377–12380. doi:10.1039/c5cc02717a

    Article  CAS  Google Scholar 

  • Davies A, Audette P, Farrow B, Hassan F, Chen Z, Choi J-Y, Yu A (2011) Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C 115(35):17612–17620. doi:10.1021/jp205568v

    Article  CAS  Google Scholar 

  • Davoglio RA, Biaggio SR, Rocha RC, Bocchi N (2010) Bilayered nanofilm of polypyrrole and poly(DMcT) for high-performance battery cathodes. J Power Sources 195(9):2924–2927. doi:10.1016/j.jpowsour.2009.11.014

    Article  CAS  Google Scholar 

  • Davoglio RA, Biaggio SR, Bocchi N, Rocha-Filho RC (2013) Flexible and high surface area composites of carbon fiber, polypyrrole, and poly(DMcT) for supercapacitor electrodes. Electrochim Acta 93:93–100. doi:10.1016/j.electacta.2013.01.062

    Article  CAS  Google Scholar 

  • De Adhikari A, Oraon R, Tiwari SK, Lee JH, Nayak GC (2015) Effect of waste cellulose fibres on the charge storage capacity of polypyrrole and graphene/polypyrrole electrodes for supercapacitor application. RSC Adv 5(35):27347–27355. doi:10.1039/c4ra16174b

    Article  CAS  Google Scholar 

  • Debiemme-Chouvy C, Tran TTM (2008) An insight into the overoxidation of polypyrrole materials. Electrochem Commun 10(6):947–950. doi:10.1016/j.elecom.2008.04.024

    Article  CAS  Google Scholar 

  • Ding X, Zhao Y, Hu C, Hu Y, Dong Z, Chen N, Qu L (2014) Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. J Mater Chem A 2(31):12355–12360. doi:10.1039/c4ta01230e

    Article  CAS  Google Scholar 

  • Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22(7):3044–3052. doi:10.1039/c2jm14470k

    Article  CAS  Google Scholar 

  • Fan J, Wan M, Zhu D, Chang B, Pan Z, Xie S (1999a) Synthesis and properties of carbon nanotube-polypyrrole composites. Synth Met 102(1–3 pt 2):1266–1267. doi:10.1016/S0379-6779(98)01462-3

    Article  CAS  Google Scholar 

  • Fan J, Wan M, Zhu D, Chang B, Pan Z, Xie S (1999b) Synthesis, characterizations, and physical properties of carbon nanotubes coated by conducting polypyrrole. J Appl Polym Sci 74(11):2605–2610. doi:10.1002/(SICI)1097-4628(19991209)74:11<2605:AID-APP6>3.0.CO;2-R

    Article  CAS  Google Scholar 

  • Fan L-Q, Liu G-J, Wu J-H, Liu L, Lin J-M, Wei Y-L (2014) Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochim Acta 137:26–33. doi:10.1016/j.electacta.2014.05.137

    Article  CAS  Google Scholar 

  • Fan X, Yang Z, He N (2015) Hierarchical nanostructured polypyrrole/graphene composites as supercapacitor electrode. RSC Adv 5(20):15096–15102. doi:10.1039/c4ra15258a

    Article  CAS  Google Scholar 

  • Fang Y, Liu J, Yu DJ, Wicksted JP, Kalkan K, Topal CO, Li J (2010) Self-supported supercapacitor membranes: polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. J Power Sources 195(2):674–679. doi:10.1016/j.jpowsour.2009.07.033

    Article  CAS  Google Scholar 

  • Feng HX, Wang B, Tan L, Chen NL, Wang NX, Chen BY (2014) Polypyrrole/hexadecylpyridinium chloride-modified graphite oxide composites: fabrication, characterization, and application in supercapacitors. J Power Sources 246:621–628. doi:10.1016/j.jpowsour.2013.08.002

    Article  CAS  Google Scholar 

  • Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9(15):1774–1785. doi:10.1039/b618139m

    Article  CAS  Google Scholar 

  • Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950. doi:10.1016/S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  • Frank S, Poncharal P, Wang ZL, Heer WAd (1998) Carbon nanotube quantum resistors. Science 280(5370):1744–1746. doi:10.1126/science.280.5370.1744

    Article  CAS  Google Scholar 

  • Fu Q, Gao B, Dou H, Hao L, Lu X, Sun K, Zhang X (2011) Novel non-covalent sulfonated multiwalled carbon nanotubes from p-toluenesulfonic acid/glucose doped polypyrrole for electrochemical capacitors. Synth Met 161(5–6):373–378. doi:10.1016/j.synthmet.2010.12.009

    Article  CAS  Google Scholar 

  • Fu H, Du Z-J, Zou W, Li H-Q, Zhang C (2013) Carbon nanotube reinforced polypyrrole nanowire network as a high-performance supercapacitor electrode. J Mater Chem A 1(47):14943–14950. doi:10.1039/c3ta12844j

    Article  CAS  Google Scholar 

  • Gan JK, Lim YS, Pandikumar A, Huang NM, Lim HN (2015) Graphene/polypyrrole-coated carbon nanofiber core-shell architecture electrode for electrochemical capacitors. RSC Adv 5(17):12692–12699. doi:10.1039/c4ra14922j

    Article  CAS  Google Scholar 

  • Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interface Sci 193–194:24–34. doi:10.1016/j.cis.2013.03.003

    Article  CAS  Google Scholar 

  • Han Y, Shen M, Lin X, Ding B, Zhang L, Tong H, Zhang X (2012) Ternary phase interfacial polymerization of polypyrrole/MWCNT nanocomposites with core-shell structure. Synth Met 162(9–10):753–758. doi:10.1016/j.synthmet.2012.03.001

    Article  CAS  Google Scholar 

  • Hussain S, Amade R, Jover E, Bertran E (2015) Growth and plasma functionalization of carbon nanotubes. J Clust Sci 26(2):315–336. doi:10.1007/s10876-015-0862-1

    Article  CAS  Google Scholar 

  • Izadi-Najafabadi A, Tan DTH, Madden JD (2005) Towards high power polypyrrole/carbon capacitors. Synth Met 152(1–3):129–132. doi:10.1016/j.synthmet.2005.07.094

    Article  CAS  Google Scholar 

  • Johnson DW, Dobson BP, Coleman KS (2015) A manufacturing perspective on graphene dispersions. Curr Opin Coll Interface Sci 20(5–6):367–382. doi:10.1016/j.cocis.2015.11.004

    Article  CAS  Google Scholar 

  • Jurewicz K, Delpeux S, Bertagna V, Béguin F, Frackowiak E (2001) Supercapacitors from nanotubes/polypyrrole composites. Chem Phys Lett 347(1–3):36–40. doi:10.1016/S0009-2614(01)01037-5

    Article  CAS  Google Scholar 

  • Kharisov BI, Kharissova OV, Leija Gutierrez H, Ortiz Méndez U (2009) Recent advances on the soluble carbon nanotubes. Ind Eng Chem Res 48(2):572–590. doi:10.1021/ie800694f

    Article  CAS  Google Scholar 

  • Khomenko V, Frackowiak E, Béguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50(12):2499–2506. doi:10.1016/j.electacta.2004.10.078

    Article  CAS  Google Scholar 

  • Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87(21):215502. doi:10.1103/PhysRevLett.87.215502

    Article  CAS  Google Scholar 

  • Kim J-Y, Kim KH, Kim KB (2008) Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size. J Power Sources 176(1):396–402. doi:10.1016/j.jpowsour.2007.09.117

    Article  CAS  Google Scholar 

  • Kim BC, Hong J-Y, Wallace GG, Park HS (2015) Recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions. Adv Energy Mat 5(22). doi:10.1002/aenm.201500959

  • Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57(7):1061–1105. doi:10.1016/j.pmatsci.2012.03.002

    Article  CAS  Google Scholar 

  • Kumar A, Singh RK, Singh HK, Srivastava P, Singh R (2014) Enhanced capacitance and stability of p-toluenesulfonate doped polypyrrole/carbon composite for electrode application in electrochemical capacitors. J Power Sources 246:800–807. doi:10.1016/j.jpowsour.2013.07.121

    Article  CAS  Google Scholar 

  • Lai L, Wang L, Yang H, Sahoo NG, Tam QX, Liu J, Lin J (2012) Tuning graphene surface chemistry to prepare graphene/polypyrrole supercapacitors with improved performance. Nano Energy 1(5):723–731. doi:10.1016/j.nanoen.2012.05.012

    Article  CAS  Google Scholar 

  • Lee H, Kim H, Cho MS, Choi J, Lee Y (2011) Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochim Acta 56(22):7460–7466. doi:10.1016/j.electacta.2011.06.113

    Article  CAS  Google Scholar 

  • Li X, Zhitomirsky I (2013) Electrodeposition of polypyrrole-carbon nanotube composites for electrochemical supercapacitors. J Power Sources 221:49–56. doi:10.1016/j.jpowsour.2012.08.017

    Article  CAS  Google Scholar 

  • Li J, Zhan H, Zhou Y (2003) Synthesis and electrochemical properties of polypyrrole-coated poly(2,5-dimercapto-1,3,4-thiadiazole). Electrochem Commun 5(7):555–560. doi:10.1016/S1388-2481(03)00121-8

    Article  CAS  Google Scholar 

  • Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105. doi:10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  • Li X, Imin P, Adronov A, Zhitomirsky I (2012) Effect of 5-sulfosalicylic acid and poly 2,5-bis(3-sulfonatopropoxy)-1,4-ethynylphenylene-alt-1,4-ethynylphenylene on electrodeposition of polypyrrole-carbon nanotube films on stainless steel. Mater Lett 68:24–27. doi:10.1016/j.matlet.2011.10.010

    Article  CAS  Google Scholar 

  • Li J, Xie H, Li Y (2013) Fabrication of graphene oxide/polypyrrole nanowire composite for high performance supercapacitor electrodes. J Power Sources 241:388–395. doi:10.1016/j.jpowsour.2013.04.144

    Article  CAS  Google Scholar 

  • Li P, Shi E, Yang Y, Shang Y, Peng Q, Wu S, Wu D (2014) Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Res 7(2):209–218. doi:10.1007/s12274-013-0388-5

    Article  CAS  Google Scholar 

  • Liang K, Gu T, Cao Z, Tang X, Hu W, Wei B (2014) In situ synthesis of SWNTs@MnO2/polypyrrole hybrid film as binder-free supercapacitor electrode. Nano Energy 9:245–251. doi:10.1016/j.nanoen.2014.07.017

    Article  CAS  Google Scholar 

  • Lim YS, Lim HN, Lim SP, Huang NM (2014) Catalyst-assisted electrochemical deposition of graphene decorated polypyrrole nanoparticles film for high-performance supercapacitor. RSC Adv 4(99):56445–56454. doi:10.1039/c4ra09234a

    Article  CAS  Google Scholar 

  • Lin XQ, Xu YH (2008) Facile synthesis and electrochemical capacitance of composites of polypyrrole/multi-walled carbon nanotubes. Electrochim Acta 53(15):4990–4997. doi:10.1016/j.electacta.2008.02.020

    Article  CAS  Google Scholar 

  • Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for Energy Storage. Adv Mater, 22(8) E28-+  doi: 10.1002/adma.200903328

  • Liu J, An J, Ma Y, Li M, Ma R (2012) Synthesis of a graphene-polypyrrole nanotube composite and its application in supercapacitor electrode. J Electrochem Soc 159(6):A828–A833. doi:10.1149/2.093206jes

    Article  CAS  Google Scholar 

  • Liu F, Han G, Chang Y, Fu D, Li Y, Li M (2014) Fabrication of carbon nanotubes/polypyrrole/carbon nanotubes/melamine foam for supercapacitor. J App Poly Sci 131(2):39779. doi:10.1002/app.39779

    Google Scholar 

  • Liu X, Qian T, Xu N, Zhou J, Guo J, Yan C (2015) Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites. Carbon 92:348–353. doi:10.1016/j.carbon.2015.05.039

    Article  CAS  Google Scholar 

  • Lu X, Dou H, Yuan C, Yang S, Hao L, Zhang F, Zhang X (2012a) Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. J Power Sources 197:319–324. doi:10.1016/j.jpowsour.2011.08.112

    Article  CAS  Google Scholar 

  • Lu X, Zhang F, Dou H, Yuan C, Yang S, Hao L, Zhang X (2012b) Preparation and electrochemical capacitance of hierarchical graphene/polypyrrole/carbon nanotube ternary composites. Electrochim Acta 69:160–166. doi:10.1016/j.electacta.2012.02.107

    Article  CAS  Google Scholar 

  • Mao L, Chan HSO, Wu J (2012) Cetyltrimethylammonium bromide intercalated graphene/polypyrrole nanowire composites for high performance supercapacitor electrode. RSC Advances 2(28):10610–10617. doi:10.1039/c2ra21617e

    Article  CAS  Google Scholar 

  • Marchesi LFQP, Simoes FR, Pocrifka LA, Pereira EC (2011) Investigation of polypyrrole degradation using electrochemical impedance spectroscopy. J Phys Chem B 115(31):9570–9575. doi:10.1021/jp2041263

    Article  CAS  Google Scholar 

  • Meyyappan M (2013) Nanostructured materials for supercapacitors. J Vac Sci Technol A 31(5):14. doi:10.1116/1.4802772

    Article  CAS  Google Scholar 

  • Mini PA, Balakrishnan A, Nair SV, Subramanian KRV (2011) Highly super capacitive electrodes made of graphene/poly(pyrrole). Chem Commun 47(20):5753–5755. doi:10.1039/c1cc00119a

    Article  CAS  Google Scholar 

  • Muthulakshmi B, Kalpana D, Pitchumani S, Renganathan NG (2006) Electrochemical deposition of polypyrrole for symmetric supercapacitors. J Power Sources 158(2):1533–1537. doi:10.1016/j.jpowsour.2005.10.013

    Article  CAS  Google Scholar 

  • NuLi Y, Guo Z, Liu H, Yang J (2007) A new class of cathode materials for rechargeable magnesium batteries: organosulfur compounds based on sulfur–sulfur bonds. Electrochem Commun 9(8):1913–1917. doi:10.1016/j.elecom.2007.05.009

    Article  CAS  Google Scholar 

  • Nyholm L, Nystrom G, Mihranyan A, Stromme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23(33):3751–3769. doi:10.1002/adma.201004134

    CAS  Google Scholar 

  • Otero TF, Grande H-J, Rodríguez J (1997) Reinterpretation of polypyrrole electrochemistry after consideration of conformational relaxation processes. J Phys Chem B 101(19):3688–3697. doi:10.1021/jp9630277

    Article  CAS  Google Scholar 

  • Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27. doi:10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  • Paul S, Lee Y-S, Choi J-A, Kang YC, Kim D-W (2010) Synthesis and electrochemical characterization of polypyrrole/multi-walled carbon nanotube composite electrodes for supercapacitor applications. Bull Korean Chem Soc 31(5):1228–1232. doi:10.5012/bkcs.2010.31.5.1228

    Article  CAS  Google Scholar 

  • Paul S, Choi KS, Lee DJ, Sudhagar P, Kang YS (2012) Factors affecting the performance of supercapacitors assembled with polypyrrole/multi-walled carbon nanotube composite electrodes. Electrochim Acta 78:649–655. doi:10.1016/j.electacta.2012.06.088

    Article  CAS  Google Scholar 

  • Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228. doi:10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  • Peng B, Locascio M, Zapol P, Li S, Mielke SL, Schatz GC, Espinosa HD (2008) Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat Nanotechnol 3(10):626–631. doi:10.1038/nnano.2008.211

    Article  CAS  Google Scholar 

  • Peng Y-J, Wu T-H, Hsu C-T, Li S-M, Chen M-G, Hu C-C (2014) Electrochemical characteristics of the reduced graphene oxide/carbon nanotube/polypyrrole composites for aqueous asymmetric supercapacitors. J Power Sources 272:970–978. doi:10.1016/j.jpowsour.2014.09.022

    Article  CAS  Google Scholar 

  • Qi K, Qiu Y, Guo X (2014) Pulse electrochemical incorporation of graphene oxide into polypyrrole films for supercapacitor electrode materials. Electrochim Acta 137:685–692. doi:10.1016/j.electacta.2014.06.083

    Article  CAS  Google Scholar 

  • Raj CJ, Kim BC, Cho W-J, Lee W-G, Jung S-D, Kim YH, Yu KH (2015) Highly flexible and planar supercapacitors using graphite flakes/polypyrrole in polymer lapping film. ACS appl mater interfaces 7(24):13405–13414. doi:10.1021/acsami.5b02070

    Article  CAS  Google Scholar 

  • Raudsepp T, Marandi M, Tamm T, Sammelselg V, Tamm J (2008) Study of the factors determining the mobility of ions in the polypyrrole films doped with aromatic sulfonate anions. Electrochim Acta 53(11):3828–3835. doi:10.1016/j.electacta.2007.11.059

    Article  CAS  Google Scholar 

  • Raymundo-Pinero E, Cadek M, Wachtler M, Beguin F (2011) Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons. Chemsuschem 4(7):943–949. doi:10.1002/cssc.201000376

    Article  CAS  Google Scholar 

  • Sadki S, Schottland P, Brodie N, Sabouraud G (2000) The mechanisms of pyrrole electropolymerization. Chem Soc Rev 29(5):283–293. doi:10.1039/A807124A

    Article  Google Scholar 

  • Sharma RK, Rastogi AC, Desu SB (2008) Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem Commun 10(2):268–272. doi:10.1016/j.elecom.2007.12.004

    Article  CAS  Google Scholar 

  • Shi C, Zhitomirsky I (2011) Electrodeposition of composite polypyrrole-carbon nanotube films. Surf Eng 27(9):655–661. doi:10.1179/1743294410y.0000000004

    Article  CAS  Google Scholar 

  • Shi K, Zhitomirsky I (2013a) Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors. J Colloid Interface Sci 407:474–481. doi:10.1016/j.jcis.2013.06.058

    Article  CAS  Google Scholar 

  • Shi K, Zhitomirsky I (2013b) Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance. ACS App Mater Interfaces 5(24):13161–13170. doi:10.1021/am404159b

    Article  CAS  Google Scholar 

  • Shi K, Zhitomirsky I (2013c) Polypyrrole nanofiber-carbon nanotube electrodes for supercapacitors with high mass loading obtained using an organic dye as a co-dispersant. J Mater Chem A 1(38):11614–11622. doi:10.1039/c3ta12466e

    Article  CAS  Google Scholar 

  • Shi K, Zhitomirsky I (2015a) Asymmetric supercapacitors based on activated-carbon-coated carbon nanotubes. Chemelectrochem 2(3):396–403. doi:10.1002/celc.201402343

    Article  CAS  Google Scholar 

  • Shi K, Zhitomirsky I (2015b) Influence of chemical structure of dyes on capacitive dye removal from solutions. Electrochim Acta 174:588–595. doi:10.1016/j.electacta.2015.06.029

    Article  CAS  Google Scholar 

  • Shi K, Ren M, Zhitomirsky I (2014) Activated carbon-coated carbon nanotubes for energy storage in supercapacitors and capacitive water purification. Acs Sustain Chem Eng 2(5):1289–1298. doi:10.1021/sc500118r

    Article  CAS  Google Scholar 

  • Shi K, Pang X, and Zhitomirsky I (2015) Fabrication of Tiron-doped polypyrrole/MWCNT composite electrodes with high mass loading and enhanced performance for supercapacitors. J App Polymer Sci 132(32). doi:10.1002/app.42376

  • Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854. doi:10.1038/nmat2297

    Article  CAS  Google Scholar 

  • Singh A, Chandra A (2013) Graphite oxide/polypyrrole composite electrodes for achieving high energy density supercapacitors. J Appl Electrochem 43(8):773–782. doi:10.1007/s10800-013-0573-y

    Article  CAS  Google Scholar 

  • Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12. doi:10.1016/j.jpowsour.2010.06.084

    Article  CAS  Google Scholar 

  • Su Y, Zhitomirsky I (2015) Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes. Appl Energy 153:48–55. doi:10.1016/j.apenergy.2014.12.010

    Article  CAS  Google Scholar 

  • Sun X, Xu Y, Wang J (2012) Electropolymerized composite film of polypyrrole and functionalized multi-walled carbon nanotubes: effect of functionalization time on capacitive performance. J Solid State Electrochem 16(5):1781–1789. doi:10.1007/s10008-011-1619-x

    Article  CAS  Google Scholar 

  • Syritski V, Öpik A, Forsén O (2003) Ion transport investigations of polypyrroles doped with different anions by EQCM and CER techniques. Electrochim Acta 48(10):1409–1417. doi:10.1016/S0013-4686(03)00018-5

    Article  CAS  Google Scholar 

  • Tao J, Liu N, Ma W, Ding L, Li L, Su J, Gao Y (2013) Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure. Sci Reports 3. doi:10.1038/srep02286

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136. doi:10.1021/cr050569o

    Article  CAS  Google Scholar 

  • Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680. doi:10.1038/381678a0

    Article  CAS  Google Scholar 

  • Wang H (2009) Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci 14(5):364–371. doi:10.1016/j.cocis.2009.06.004

    Article  CAS  Google Scholar 

  • Wang JP, Zhang DH (2013) One-dimensional nanostructured polyaniline: syntheses, morphology controlling, formation mechanisms, new features, and applications. Adv Polym Technol 32:E323–E368. doi:10.1002/adv.21283

    Article  CAS  Google Scholar 

  • Wang J, Xu Y, Chen X, Sun X (2007) Capacitance properties of single wall carbon nanotube/polypyrrole composite films. Compos Sci Technol 67(14):2981–2985. doi:10.1016/j.compscitech.2007.05.015

    Article  CAS  Google Scholar 

  • Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) Supercapacitor devices based on graphene materials. J Phy Chem C 113(30):13103–13107. doi:10.1021/jp902214f

    Article  CAS  Google Scholar 

  • Wang JP, Xu YL, Wang J, Du XF, Xiao F, Li JB (2010) High charge/discharge rate polypyrrole films prepared by pulse current polymerization. Synth Met 160(17–18):1826–1831. doi:10.1016/j.synthmet.2010.06.020

    Article  CAS  Google Scholar 

  • Wang J, Xu Y, Wang J, Du X (2011) Toward a high specific power and high stability polypyrrole supercapacitors. Synth Met 161(11–12):1141–1144. doi:10.1016/j.synthmet.2011.01.011

    Article  CAS  Google Scholar 

  • Wang GP, Zhang L, Zhang JJ (2012a) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828. doi:10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  • Wang J, Xu Y, Zhu J, Ren P (2012b) Electrochemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density. J Power Sources 208:138–143. doi:10.1016/j.jpowsour.2012.02.018

    Article  CAS  Google Scholar 

  • Wang X, Yang C, Li H, Liu P (2013) Synthesis and electrochemical performance of well-defined flake-shaped sulfonated graphene/polypyrrole composites via facile in situ doping polymerization. Electrochim Acta 111:729–737. doi:10.1016/j.electacta.2013.08.145

    Article  CAS  Google Scholar 

  • Wang J, Xu Y, Wang J, Zhu J, Bai Y, Xiong L (2014a) Study on capacitance evolving mechanism of polypyrrole during prolonged cycling. J Phy Chem B 118(5):1353–1362. doi:10.1021/jp4054428

    Article  CAS  Google Scholar 

  • Wang JP, Tao XM, Li L (2014b) Study on horn-shaped polypyrrole prepared by pulse potential. Synth Met 194:176–181. doi:10.1016/j.synthmet.2014.04.026

    Article  CAS  Google Scholar 

  • Warren R, Sammoura F, Teh KS, Kozinda A, Zang X, Lin L (2015) Electrochemically synthesized and vertically aligned carbon nanotube-polypyrrole nanolayers for high energy storage devices. Sens Actuators A-Phys 231:65–73. doi:10.1016/j.sna.2014.07.010

    Article  CAS  Google Scholar 

  • Weidlich C, Mangold KM, Jüttner K (2005) EQCM study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes. Electrochim Acta 50(7–8):1547–1552. doi:10.1016/j.electacta.2004.10.032

    Article  CAS  Google Scholar 

  • White RJ, Brun N, Budarin VL, Clark JH, Titirici MM (2014) Always look on the “light” side of life: sustainable carbon aerogels. Chemsuschem 7(3):670–689. doi:10.1002/cssc.201300961

    Article  CAS  Google Scholar 

  • Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270. doi:10.1021/cr020730k

    Article  CAS  Google Scholar 

  • Wu T-M, Lin S-H (2006) Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by in situ chemical oxidative polymerization. J Polym Sci Part B 44(10):1413–1418. doi:10.1002/polb.20809

    Article  CAS  Google Scholar 

  • Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science (New York) 305(5688):1273–1276. doi:10.1126/science.1101243

    Article  CAS  Google Scholar 

  • Wu Y, Guo C, Li N, Ji L, Li Y, Tu Y, Yang X (2014) Three-dimensional interconnected nanocarbon hybrid prepared by one-pot synthesis method with polypyrrole-based nanotube and graphene and the application in high-performance capacitance. Electrochim Acta 146:386–394. doi:10.1016/j.electacta.2014.09.055

    Article  CAS  Google Scholar 

  • Xiao Q, Zhou X (2003) The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim Acta 48(5):575–580. doi:10.1016/S0013-4686(02)00727-2

    Article  CAS  Google Scholar 

  • Xu S, Yang H, Wang K, Wang B, Xu Q (2014) Effect of supercritical CO2 on fabrication of free-standing hierarchical graphene oxide/carbon nanofiber/polypyrrole film and its electrochemical property. Phys Chem Chem Phys 16(16):7350–7357. doi:10.1039/c3cp54957g

    Article  CAS  Google Scholar 

  • Xu R, Guo F, Cui X, Zhang L, Wang K, Wei J (2015a) High performance carbon nanotube based fiber-shaped supercapacitors using redox additives of polypyrrole and hydroquinone. J Mater Chem A 3(44):22353–22360. doi:10.1039/c5ta06165b

    Article  CAS  Google Scholar 

  • Xu R, Wei J, Guo F, Cui X, Zhang T, Zhu H, Wu D (2015b) Highly conductive, twistable and bendable polypyrrole-carbon nanotube fiber for efficient supercapacitor electrodes. RSC Adv 5(28):22015–22021. doi:10.1039/c5ra01917f

    Article  CAS  Google Scholar 

  • Yang C, Liu P, Wang T (2011) Well-Defined core–shell carbon black/polypyrrole nanocomposites for electrochemical energy storage. ACS Appl Mater Interfaces 3(4):1109–1114. doi:10.1021/am1012529

    Article  CAS  Google Scholar 

  • Yang C, Shen J, Wang C, Fei H, Bao H, Wang G (2014) All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes. J Mater Chem A 2(5):1458–1464. doi:10.1039/c3ta13953k

    Article  CAS  Google Scholar 

  • Yang L, Shi Z, Yang W (2015a) Polypyrrole directly bonded to air-plasma activated carbon nanotube as electrode materials for high-performance supercapacitor. Electrochim Acta 153:76–82. doi:10.1016/j.electacta.2014.11.146

    Article  CAS  Google Scholar 

  • Yang X, Liu A, Zhao Y, Lu H, Zhang Y, Wei W, Liu S (2015b) Three-dimensional macroporous polypyrrole-derived graphene electrode prepared by the hydrogen bubble dynamic template for supercapacitors and metal-free catalysts. ACS App Mater Interfaces 7(42):23731–23740. doi:10.1021/acsami.5b07982

    Article  CAS  Google Scholar 

  • Yang X, Shi K, Zhitomirsky I, Cranston ED (2015c) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater 27(40):6104–6109. doi:10.1002/adma.201502284

    Article  CAS  Google Scholar 

  • Ye S, Feng J (2014) Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors. ACS App Mater Interfaces 6(12):9671–9679. doi:10.1021/am502077p

    Article  CAS  Google Scholar 

  • Yu C, Ma P, Zhou X, Wang A, Qian T, Wu S, Chen Q (2014) All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites. ACS app mater interfaces 6(20):17937–17943. doi:10.1021/am5059603

    Article  CAS  Google Scholar 

  • Zhang J, Zhao XS (2012) Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J Phys Chem C 116(9):5420–5426. doi:10.1021/jp211474e

    Article  CAS  Google Scholar 

  • Zhang LL, Zhao S, Tian XN, Zhao XS (2010) Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes. Langmuir 26(22):17624–17628. doi:10.1021/la103413s

    Article  CAS  Google Scholar 

  • Zhang K, Mao L, Zhang LL, On Chan HS, Zhao XS, Wu J (2011) Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. J Mater Chem 21(20):7302–7307. doi:10.1039/C1JM00007A

    Article  CAS  Google Scholar 

  • Zhang D, Dong Q-Q, Wang X, Yan W, Deng W, Shi L-Y (2013) Preparation of a three-dimensional ordered macroporous carbon nanotube/polypyrrole composite for supercapacitors and diffusion modeling. J Phys Chem C 117(40):20446–20455. doi:10.1021/jp405850w

    Article  CAS  Google Scholar 

  • Zhang Y, Li M, Yang L, Yi K, Li Z, Yao J (2014) Facilely prepared polypyrrole-graphene oxide-sodium dodecylbenzene sulfonate nanocomposites by in situ emulsion polymerization for high-performance supercapacitor electrodes. J Solid State Electrochem 18(8):2139–2147. doi:10.1007/s10008-014-2469-0

    Article  CAS  Google Scholar 

  • Zhang Y, Zhen Z, Zhang Z, Lao J, Wei J, Wang K, Zhu H (2015) In-situ synthesis of carbon nanotube/graphene composite sponge and its application as compressible supercapacitor electrode. Electrochim Acta 157:134–141. doi:10.1016/j.electacta.2015.01.084

    Article  CAS  Google Scholar 

  • Zhao Y, Liu J, Hu Y, Cheng H, Hu C, Jiang C, Qu L (2013) Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater 25(4):591–595. doi:10.1002/adma.201203578

    Article  CAS  Google Scholar 

  • Zhou X, Peng C, Chen GZ (2012) 20 V stack of aqueous supercapacitors with carbon (−), titanium bipolar plates and CNT-polypyrrole composite (+). Aiche J 58(3):974–983. doi:10.1002/aic.12632

    Article  CAS  Google Scholar 

  • Zhu Y, Zhitomirsky I (2013) Influence of dopant structure and charge on supercapacitive behavior of polypyrrole electrodes with high mass loading. Synth Met 185–186:126–132. doi:10.1016/j.synthmet.2013.10.015

    Article  CAS  Google Scholar 

  • Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924. doi:10.1002/adma.201001068

    Article  CAS  Google Scholar 

  • Zhu C, Zhai J, Wen D, Dong S (2012) Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22(13):6300–6306. doi:10.1039/c2jm16699b

    Article  CAS  Google Scholar 

  • Zhu Y, Shi K, Zhitomirsky I (2014a) Anionic dopant-dispersants for synthesis of polypyrrole coated carbon nanotubes and fabrication of supercapacitor electrodes with high active mass loading. J Mater Chem A 2(35):14666–14673. doi:10.1039/c4ta02117g

    Article  CAS  Google Scholar 

  • Zhu Y, Shi K, Zhitomirsky I (2014b) Polypyrrole coated carbon nanotubes for supercapacitor devices with enhanced electrochemical performance. J Power Sources 268:233–239. doi:10.1016/j.jpowsour.2014.06.046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank for the financial supports by Natural Science Basic Research Plan in Shaanxi Province of chain (Grant No. 2015JM2051), doctor Startup Fund of Shaanxi University of Science and Technology (Grant No. BJ12-05) and Shaanxi Science and Technology Co-ordinating Innovative Engineering Project (Grant No. 2013KTCL14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingping Wang or Xinli Jing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, X., Du, X. et al. Polypyrrole composites with carbon materials for supercapacitors. Chem. Pap. 71, 293–316 (2017). https://doi.org/10.1007/s11696-016-0048-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0048-9

Keywords

Navigation