Skip to main content

Advertisement

Log in

One Anastomosis Transit Bipartition (OATB): Rational and Mid-term Outcomes

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

The “One-anastomosis transit bipartition” (OATB) is a promising emerging technique in the metabolic syndrome treatment.

Objective

To demonstrate the results achieved with OATB in the first 5 years after surgery.

Method

Cross-sectional, retrospective study, with individuals undergoing primary OATB. Individuals included in the study were: ≥ 18 years, BMI ≥ 35 kg/m2; and excluded smoking habits, drug dependence, inflammatory bowel diseases. The data analyzed demographic, anthropometric, surgical, clinical, and nutritional.

Results

Sixty eight participants, 75% women, average age 45.5 years and BMI 41 kg/m2. Associated diseases: osteoarthritis (52.9%), hypertension (48.5%) and type 2 diabetes mellitus—T2DM (39.7%). All underwent laparoscopy, without conversions. Average operative time is 122.6 ± 31.7 min, and hospital stay is 2.2 ± 0.8 days. The common channel length 27 and 41 patients with 250 cm and 300 cm respectively. We registered no intraoperative complications, 2 (2.9%) early complications, and 14 (20.6%) late complications. In the first 6 months, 94.7% (250 cm) and 88.9% (300 cm) of the patients no longer used medication for T2DM, with no statistical difference between the two groups. The incidence of nutritional disorders at any time during follow-up: hypovitaminosis D (14.7%), folate hypovitaminosis (14.7%), elevated PTH (7.4%), hypoproteinemia (5.9%) and anemia (5.9%). We found no statistically significant difference between 250 and 300 cm common channel groups.

Conclusion

We conclude that OATB is a safe and effective technique, demonstrating good control of T2DM and metabolic syndrome. There is a requirement to treat previous nutritional deficits. We need more long-term evidence and comparison to other surgical techniques.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

We declare that the data are available for future studies.

References

  1. Mahdy T, Al Wahedi A, Schou C. Efficacy of single anastomosis sleeve ileal (SASI) bypass for type-2 diabetic morbid obese patients: gastric bipartition, a novel metabolic surgery procedure: a retrospective cohort study. Int J Surg. 2016;34:28–34. https://doi.org/10.1016/j.ijsu.2016.08.018.

    Article  CAS  PubMed  Google Scholar 

  2. Bhandari M, Fobi MAL, Buchwald JN. Bariatric Metabolic Surgery Standardization (BMSS) Working Group: standardization of bariatric metabolic procedures: world consensus meeting statement. Obes Surg. 2019;29(Suppl 4):309–45. https://doi.org/10.1007/s11695-019-04032-x.

    Article  PubMed  Google Scholar 

  3. Mahdy T, Emile SH, Madyan A, et al. Evaluation of the efficacy of single anastomosis sleeve ileal (SASI) bypass for patients with morbid obesity: a multicenter study. Obes Surg. 2020;30(3):837–45. https://doi.org/10.1007/s11695-019-04296-3.

    Article  PubMed  Google Scholar 

  4. Valezi AC, Campos ACL, Bahten LCV. Brazilian multi-society position statement on emerging bariatric and metabolic surgical procedures. Arq Bras Cir Dig. 2023;36:e1759. https://doi.org/10.1590/0102-672020230041e1759.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mui WL, Lee DW, Lam KK. Laparoscopic sleeve gastrectomy with loop bipartition: a novel metabolic operation in treating obese type II diabetes mellitus. Int J Surg Case Rep. 2014;5(2):56–8. https://doi.org/10.1016/j.ijscr.2013.12.002.

    Article  PubMed  Google Scholar 

  6. Santoro S, Velhote MCP, Malzoni CE, et al. Digestive adaptation: a new surgical proposal to treat obesity based in physiology and evolution. Einstein. 2003;1(2):99–104.

    Google Scholar 

  7. Santoro S, Milleo FQ, Malzoni CE, et al. Enterohormonal changes after digestive adaptation: five-year results of a surgical proposal to treat obesity and associated diseases. Obes Surg. 2008;18(1):17–26. https://doi.org/10.1007/s11695-007-9371-0.

    Article  PubMed  Google Scholar 

  8. Santoro S, Castro LC, Velhote MC, et al. Sleeve gastrectomy with transit bipartition: a potent intervention for metabolic syndrome and obesity. Ann Surg. 2012;256(1):104–10. https://doi.org/10.1097/SLA.0b013e31825370c0.

    Article  PubMed  Google Scholar 

  9. Angevine KR, Wuescher LM, Andrews K, et al. Menin and GIP are inversely regulated by food intake and diet via PI3/AKT signaling in the proximal duodenum. Nutr Diabetes. 2012;2(12):e55. https://doi.org/10.1038/nutd.2012.30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Higashimoto Y, Opara EC, Liddle RA. Dietary regulation of glucose-dependent insulinotropic peptide (GIP) gene expression in rat small intestine. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1995;110(2):207–14. https://doi.org/10.1016/0742-8413(94)00087-q.

    Article  CAS  PubMed  Google Scholar 

  11. Carr RD, Larsen MO, Winzell MS, et al. Incretin and islet hormonal responses to fat and protein ingestion in healthy men. Am J Physiol Endocrinol Metab. 2008;295(4):E779–84. https://doi.org/10.1152/ajpendo.90233.2008.

    Article  CAS  PubMed  Google Scholar 

  12. Romero RJ, Colorado-Subizar R, De Uriarte-Lorente M, et al. Single anastomosis sleeve ileal bypass (SASI bypass): short-term outcomes and concerns. Obes Surg. 2021;31(5):2339–43. https://doi.org/10.1007/s11695-020-05145-4.

    Article  PubMed  Google Scholar 

  13. Aghajani E, Schou C, Gislason H, et al. Mid-term outcomes after single anastomosis sleeve ileal (SASI) bypass in treatment of morbid obesity. Surg Endosc. 2023;37(8):6220–7. https://doi.org/10.1007/s00464-023-10112-y.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ribeiro R, Pouwels S, Parmar C, et al. Outcomes of long pouch gastric bypass (LPGB): 4-year experience in primary and revision cases. Obes Surg. 2019;29:3665–71. https://doi.org/10.1007/s11695-019-04051-8.

    Article  PubMed  Google Scholar 

  15. Carbajo M, García-Caballero M, Toledano M, et al. One-anastomosis gastric bypass by laparoscopy: results of the first 209 patients. Obes Surg. 2005;15(3):398–404. https://doi.org/10.1381/0960892053576677.

    Article  PubMed  Google Scholar 

  16. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York, USA: Lawrence Erlbaum Associates; 1988.

    Google Scholar 

  17. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Santoro S, Aquino CGG, Mota FC, Artoni RF. Does evolutionary biology help the understanding of metabolic surgery? A focused review. ABCD Arq Bras Cir Dig. 2020;33(1):e1503. https://doi.org/10.1590/0102-672020190001e1503.

    Article  PubMed  Google Scholar 

  19. Santoro S, Malzoni CE, Velhote MC, et al. Digestive adaptation with intestinal reserve: a neuroendocrinebased operation for morbid obesity. Obes Surg. 2006;16(10):1371–9. https://doi.org/10.1381/096089206778663841.

    Article  PubMed  Google Scholar 

  20. Santoro S, Velhote MC, Malzoni CE, et al. Preliminary results from digestive adaptation: a new surgical proposal for treating obesity, based on physiology and evolution. Sao Paulo Med J. 2006;124(4):192–7. https://doi.org/10.1590/s1516-31802006000400004.

    Article  PubMed  Google Scholar 

  21. Ma T, Huo S, Xu B, Li F, Wang P, Liu Y, Lei H. A novel long-acting oxyntomodulin analogue eliminates diabetes and obesity in mice. Eur J Med Chem. 2020;203:112496. https://doi.org/10.1016/j.ejmech.2020.112496. Epub 2020 Jul 12.

  22. Azevedo FR, Santoro S, Correa-Giannella ML, et al. A prospective randomized controlled trial of the metabolic effects of sleeve gastrectomy with transit bipartition. Obes Surg. 2018;28:3012–9. https://doi.org/10.1007/s11695-018-3239-3.

    Article  PubMed  Google Scholar 

  23. Hao Y, Zhou J, Zhou M, et al. Serum levels of fibroblast growth factor 19 are inversely associated with coronary artery disease in Chinese individuals. Plos One. 2013;8(8):e72345. https://doi.org/10.1371/journal.pone.0072345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holst JJ, Gasbjerg LS, Rosenkilde MM. The role of incretins on insulin function and glucose homeostasis. Endocrinology. 2021;162(7):bqab065. https://doi.org/10.1210/endocr/bqab065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1–11. https://doi.org/10.1097/01.sla.0000102989.54824.fc.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rubino F, R’bibo SL, del Genio F, et al. Metabolic surgery: the role of the gastrointestinal tract in diabetes mellitus. Nat Rev Endocrinol. 2010;6(2):102–9. https://doi.org/10.1038/nrendo.2009.268.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50. https://doi.org/10.1016/j.cmet.2016.05.005.

    Article  CAS  PubMed  Google Scholar 

  28. International Federation for Surgery for Obesity and Metabolic Disorders - IFSO 2023. 8th global registry report. Available in:  https://www.ifso.com/pdf/8th-ifso-registry-report-2023.pdf-.

  29. Gyawali CP, Kahrilas PJ, Savarino E, Zerbib F, Mion F, Smout AJPM, Vaezi M, Sifrim D, Fox MR, Vela MF, Tutuian R, Tack J, Bredenoord AJ, Pandolfino J, Roman S. Modern diagnosis of GERD: the Lyon Consensus. Gut. 2018;67(7):1351–1362. https://doi.org/10.1136/gutjnl-2017-314722. Epub 2018 Feb 3.

  30. Emile SH, Madyan A, Mahdy T, et al. Single anastomosis sleeve ileal (SASI) bypass versus sleeve gastrectomy: a case-matched multicenter study. Surg Endosc. 2021;35(2):652–60. https://doi.org/10.1007/s00464-020-07430-w.

    Article  PubMed  Google Scholar 

  31. Hosseini SV, Moeinvaziri N, Medhati P, et al. The effect of single-anastomosis sleeve ileal (SASI) bypass on patients with severe obesity in three consecutive years. World J Surg. 2022;46(11):2744–50. https://doi.org/10.1007/s00268-022-06706-7.

    Article  PubMed  Google Scholar 

  32. Kermansaravi M, Kabir A. Single anastomosis sleeve ileal (SASI) bypass: patient selection. Obes Surg. 2021;31(2):867–8. https://doi.org/10.1007/s11695-020-04891-9.

    Article  PubMed  Google Scholar 

  33. Khalaf M, Hamed H. Single-anastomosis sleeve ileal (SASI) bypass: hopes and concerns after a two-year follow-up. Obes Surg. 2021;31(2):667–74. https://doi.org/10.1007/s11695-020-04945-y.

    Article  PubMed  Google Scholar 

  34. Sewefy AM, Atyia AM, Mohammed MM, et al. Single anastomosis sleeve jejunal (SAS-J) bypass as a treatment for morbid obesity, technique and review of 1986 cases and 6 years follow-up. Retrospective Cohort Int J Surg. 2022;102:106662. https://doi.org/10.1016/j.ijsu.2022.106662.

    Article  PubMed  Google Scholar 

  35. Madyan A, Emile SH, Abdel-Razik MA, et al. Laparoscopic single anastomosis sleeve ileal (SASI) bypass for patients with morbid obesity: technical description and short-term outcomes. Surg Laparosc Endosc Percutan Tech. 2020;30(2):e13–7. https://doi.org/10.1097/SLE.0000000000000763.

    Article  PubMed  Google Scholar 

  36. Salama TMS, Sabry K, Ghamrini YE. Single anastomosis sleeve ileal bypass: new step in the evolution of bariatric surgeries. J Invest Surg. 2017;30(5):291–6. https://doi.org/10.1080/08941939.2016.1241841.

    Article  PubMed  Google Scholar 

  37. Sewefy AM, Saleh A. The outcomes of single anastomosis sleeve jejunal bypass as a treatment for morbid obesity (two-year follow-up). Surg Endosc. 2021;35(10):5698–704. https://doi.org/10.1007/s00464-020-08029-x.

    Article  PubMed  Google Scholar 

  38. Himpens J, Dobbeleir J, Peeters G. Long-term results of laparoscopic sleeve gastrectomy for obesity. Ann Surg. 2010;252(2):319–24. https://doi.org/10.1097/SLA.0b013e3181e90b31.

    Article  PubMed  Google Scholar 

  39. Borgeraas H, Hofsø D, Hertel JK, et al. Comparison of the effect of Roux-en-Y gastric bypass and sleeve gastrectomy on remission of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2020;21(6):e13011. https://doi.org/10.1111/obr.13011.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Welbourn R, Hollyman M, Kinsman R, et al. Bariatric surgery worldwide: baseline demographic description and one-year outcomes from the Fourth IFSO Global Registry Report 2018. Obes Surg. 2019;29(3):782–95. https://doi.org/10.1007/s11695-018-3593-1.

    Article  PubMed  Google Scholar 

  41. Mahdy T, Gado W, Alwahidi A, et al. Sleeve gastrectomy, one-anastomosis gastric bypass (OAGB), and single anastomosis sleeve ileal (SASI) bypass in treatment of morbid obesity: a retrospective cohort study. Obes Surg. 2021;31(4):1579–89. https://doi.org/10.1007/s11695-020-05159-y.

    Article  PubMed  Google Scholar 

  42. Rezaei MT, Sheikhbahaei E, Zefreh H, et al. Single-anastomosis sleeve jejunal: a mid-term follow-up report of a new surgical technique. Obes Surg. 2023;33(4):1245–52. https://doi.org/10.1007/s11695-023-06520-7.

    Article  PubMed  Google Scholar 

  43. Hsu KF, Chang SW, Lee WJ, et al. From our one anastomosis gastric bypass (OAGB) experience to establishing single anastomosis sleeve ileal (SASI) bypass procedure: a single-center reporT. Obes Surg. 2023;33(4):1318–22. https://doi.org/10.1007/s11695-023-06523-4.

    Article  PubMed  Google Scholar 

  44. Parrott J, Frank L, Rabena R, et al. American Society for Metabolic and Bariatric Surgery integrated health nutritional guidelines for the surgical weight loss patient 2016 update: micronutrients. Surg Obes Relat Dis. 2017;13(5):727–41. https://doi.org/10.1016/j.soard.2016.12.018.

    Article  PubMed  Google Scholar 

  45. Pereira SE, Rossoni C, Cambi MPC, et al. Brazilian guide to nutrition in bariatric and metabolic surgery. Langenbecks Arch Surg. 2023;408(1):143. https://doi.org/10.1007/s00423-023-02868-7.

    Article  PubMed  Google Scholar 

  46. Salminen P, Kow L, Aminian A, Kaplan LM, Nimeri A, Prager G, Behrens E, White KP, Shikora S, IFSO Experts Panel. IFSO consensus on definitions and clinical practice guidelines for obesity management-an international delphi study. Obes Surg. 2023. https://doi.org/10.1007/s11695-023-06913-8. Epub ahead of print. 

  47. Strain GW, Torghabeh MH, Gagner M, et al. Nutrient status 9 years after biliopancreatic diversion with duodenal switch (BPD/DS): an observational study. Obes Surg. 2017;27(7):1709–18. https://doi.org/10.1007/s11695-017-2560-6.

    Article  PubMed  Google Scholar 

  48. Chu Y, Widjaja J, Wang J, et al. Single anastomosis sleeve ileal and one anastomosis gastric bypass outcome comparison in an obese rat model. Research Square. 2023. https://doi.org/10.21203/rs.3.rs-2543662/v1.

  49. Musella M, Berardi G, Bocchetti A, et al. Esophagogastric neoplasms following bariatric surgery: an updated systematic review. Obes Surg. 2019;29(8):2660–9. https://doi.org/10.1007/s11695-019-03951-z.

    Article  PubMed  Google Scholar 

  50. Rutledge R. The mini-gastric bypass: experience with the first 1,274 cases. Obes Surg. 2001;11(3):276–80. https://doi.org/10.1381/096089201321336584.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

To Ana Maria Taranu, for developing the art we present about the surgical technique—OATB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina Rossoni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Findings

• OATB is an effective and safe metabolic bariatric procedure, and 250 or 300 cm of CC seems to offer the same weight loss and metabolic effect 5 years after the operation.

• The percentage of total weight reduction was 31.1%, and the remission of type 2 diabetes mellitus was 91.8% at the end of 5 years.

• The percentage of patients with previous reflux who stopped taking medication was 90.5%.

• The main deficits found over 5 years were folic acid and vitamin D. Both anemia and hypoproteinemia rates were low (5.9%).

The results of this study were presented in oral communication at the XXVI IFSO World Congress of Bariatric and Metabolic Surgery. Naples 2023. 30th August–1st September 2023, at the Mostra d’ Oltremare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, R., Viveiros, O., Taranu, V. et al. One Anastomosis Transit Bipartition (OATB): Rational and Mid-term Outcomes. OBES SURG 34, 371–381 (2024). https://doi.org/10.1007/s11695-023-06988-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-023-06988-3

Keywords

Navigation