Skip to main content
Log in

The Contributing Role of Bile Acids to Metabolic Improvements After Obesity and Metabolic Surgery

  • Review Article
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Obesity and metabolic surgery (OMS) leads to several metabolic improvements, which often occur prior to substantial weight loss. Therefore, other factors in addition to weight loss contribute to the metabolic benefits. This literature review offers an overview of studies investigating bile acids (BAs) and their metabolic effects after OMS. Rearrangement of enterohepatic circulation, changes in BA synthesis, BA conjugation, intestinal reabsorption, and alterations in the gut microbiota are potential mechanisms for altered BA profiles after surgery. Increased BA levels are associated with improved glucose homeostasis and lipid profiles, which are mediated by two major receptors: the Transmembrane G-protein Coupled Receptor and the Farnesoid X Receptor. Therefore, pharmacological manipulation of BAs and their receptors may be viable targets for less invasive obesity treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BAs:

Bile acids

BAT:

Brown adipose tissue

CA:

Cholic acid

CDCA:

Chenodeoxycholic acid

DCA:

Deoxycholic acid

EE:

Energy expenditure

FGF19:

Fibroblast growth factor 19

FXR:

Farnesoid X receptor

GLP-1:

Glucagon like peptide 1

II:

Ileal interposition

LAGB:

Laparoscopic adjustable gastric banding

LCA:

Lithocholic acid

M2:

Muscarinic receptor

OMS:

Obesity and metabolic surgery

PYY:

Peptide YY

REE:

Resting energy expenditure

RYGB:

Roux-en-Y gastric bypass

S1PR2:

Sphingosine-1-phosphate receptor 2

SG:

Sleeve gastrectomy

SHP:

Small heterodimer partner

T2DM:

Type 2 diabetes mellitus

TGR-5:

Transmembrane G-protein coupled receptor

TUDCA:

Tauroursodeoxycholic acid

UDCA:

Ursodeoxycholic acid

VSG:

Vertical sleeve gastrectomy

References

  1. Baptista V, Wassef W. Bariatric procedures: an update on techniques, outcomes and complications. Curr Opin Gastroenterol. 2013;29(6):684–93. doi:10.1097/MOG.0b013e3283651af2. Epub 2013/10/09.

    Article  PubMed  Google Scholar 

  2. Sasaki A, Nitta H, Otsuka K, Umemura A, Baba S, Obuchi T, et al. Bariatric surgery and non-alcoholic fatty liver disease: current and potential future treatments. Front Endocrinol (Lausanne). 2014;5:164. Epub 2014/11/12. doi: 10.3389/fendo.2014.00164. PubMed PMID: 25386164; PubMed Central PMCID: PMCPMC4209858.

  3. Thaler JP, Cummings DE. Minireview: Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150(6):2518–25. doi:10.1210/en.2009-0367. Epub 2009/04/18.

    Article  CAS  PubMed  Google Scholar 

  4. Sweeney TE, Morton JM. Metabolic surgery: action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Best Pract Res Clin Gastroenterol. 2014;28(4):727–40. doi:10.1016/j.bpg.2014.07.016. Epub 2014/09/10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reshetnyak VI. Physiological and molecular biochemical mechanisms of bile formation. World J Gastroenterol. 2013;19(42):7341–60. doi:10.3748/wjg.v19.i42.7341.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009;50(10):1955-66. Epub 2009/04/07. doi: 10.1194/jlr.R900010-JLR200. PubMed PMID: 19346330; PubMed Central PMCID: PMCPmc2739756.

  7. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147–91. doi:10.1152/physrev.00010.2008. Epub 2009/01/08.

    Article  CAS  PubMed  Google Scholar 

  8. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–59. doi:10.1194/jlr.R500013-JLR200. Epub 2005/11/22.

    Article  CAS  PubMed  Google Scholar 

  9. Angrisani L, Santonicola A, Iovino P, Formisano G, Buchwald H, Scopinaro N. Bariatric Surgery Worldwide 2013. Obes Surg. 2015;25(10):1822–32. doi:10.1007/s11695-015-1657-z. Epub 2015/04/04.

    Article  CAS  PubMed  Google Scholar 

  10. Belgaumkar AP, Vincent RP, Carswell KA, Hughes RD, Alaghband-Zadeh J, Mitry RR, et al. Changes in bile acid profile after laparoscopic sleeve gastrectomy are associated with improvements in metabolic profile and fatty liver disease. Obes Surg. 2015. Epub 2015/09/05. doi: 10.1007/s11695-015-1878-1.

  11. Haluzikova D, Lacinova Z, Kavalkova P, Drapalova J, Krizova J, Bartlova M, et al. Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects. Obesity (Silver Spring). 2013;21(7):1335–42. doi:10.1002/oby.20208. Epub 2013/05/15.

    Article  CAS  Google Scholar 

  12. Quigley S, Colledge J, Mukherjee S, Patel K. Bariatric surgery: a review of normal postoperative anatomy and complications. Clin Radiol. 2011;66(10):903–14. doi:10.1016/j.crad.2011.04.017. Epub 2011/07/26.

    Article  CAS  PubMed  Google Scholar 

  13. Steinert RE, Peterli R, Keller S, Meyer-Gerspach AC, Drewe J, Peters T, et al. Bile acids and gut peptide secretion after bariatric surgery: a 1-year prospective randomized pilot trial. Obesity (Silver Spring). 2013;21(12):E660–8. doi:10.1002/oby.20522. Epub 2013/06/28.

    Article  CAS  Google Scholar 

  14. Angelin B, Björkhem I, Einarsson K, Ewerth S. Hepatic uptake of bile acids in man: fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. J Clin Investig. 1982;70(4):724–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ewerth S, Angelin B, Einarsson K, Nilsell K, Bjorkhem I. Serum concentrations of ursodeoxycholic acid in portal venous and systemic venous blood of fasting humans as determined by isotope dilution-mass spectrometry. Gastroenterology. 1985;88(1 Pt 1):126–33. Epub 1985/01/01.

    CAS  PubMed  Google Scholar 

  16. Han H, Wang L, Du H, Jiang J, Hu C, Zhang G, et al. Expedited biliopancreatic juice flow to the distal gut benefits the diabetes control after duodenal-jejunal bypass. Obes Surg. 2015. Epub 2015/03/03. doi: 10.1007/s11695-015-1633-7

  17. Ahmad NN, Pfalzer A, Kaplan LM. Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity. Int J Obes (Lond). 2013;37(12):1553-9. Epub 2013/04/10. doi: 10.1038/ijo.2013.38. PubMed PMID: 23567924; PubMed Central PMCID: PMCPmc4157126.

  18. Dutia R, Embrey M, O’Brien CS, Haeusler RA, Agenor KK, Homel P, et al. Temporal changes in bile acid levels and 12alpha-hydroxylation after Roux-en-Y gastric bypass surgery in type 2 diabetes. Int J Obes (Lond). 2015.

  19. Jorgensen NB, Dirksen C, Bojsen-Moller KN, Kristiansen VB, Wulff BS, Rainteau D, et al. Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations. J Clin Endocrinol Metab. 2015;100(3):E396–406. doi:10.1210/jc.2014-1658. Epub 2014/12/24.

    Article  CAS  PubMed  Google Scholar 

  20. Nakatani H, Kasama K, Oshiro T, Watanabe M, Hirose H, Itoh H. Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery. Metabolism. 2009;58(10):1400–7. doi:10.1016/j.metabol.2009.05.006. Epub 2009/07/03.

    Article  CAS  PubMed  Google Scholar 

  21. Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E. Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids. Diabetes. 2013;62:4184–91. United States.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uchida K, Makino S, Akiyoshi T. Altered bile acid metabolism in nonobese, spontaneously diabetic (NOD) mice. Diabetes. 1985;34(1):79–83. Epub 1985/01/01.

    Article  CAS  PubMed  Google Scholar 

  23. Bhutta HY, Rajpal N, White W, Freudenberg JM, Liu Y, Way J, et al. Effect of Roux-en-Y gastric bypass surgery on bile acid metabolism in normal and obese diabetic rats. PLoS One. 2015;10:e0122273. United States.

    Article  PubMed  PubMed Central  Google Scholar 

  24. De Giorgi S, Campos V, Egli L, Toepel U, Carrel G, Cariou B, et al. Long-term effects of Roux-en-Y gastric bypass on postprandial plasma lipid and bile acids kinetics in female non diabetic subjects: a cross-sectional pilot study. Clin Nutr. 2014. Epub 2014/10/13. doi: 10.1016/j.clnu.2014.09.018

  25. Zhou H, Hylemon PB. Bile acids are nutrient signaling hormones. Steroids. 2014;86:62-8. Epub 2014/05/14. doi: 10.1016/j.steroids.2014.04.016. PubMed PMID: 24819989; PubMed Central PMCID: PMCPmc4073476.

  26. Simonen M, Dali-Youcef N, Kaminska D, Venesmaa S, Kakela P, Paakkonen M, et al. Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass. Obes Surg. 2012;22(9):1473–80. doi:10.1007/s11695-012-0673-5. Epub 2012/05/29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Glicksman C, Pournaras DJ, Wright M, Roberts R, Mahon D, Welbourn R, et al. Postprandial plasma bile acid responses in normal weight and obese subjects. Ann Clin Biochem. 2010;47(Pt 5):482–4. doi:10.1258/acb.2010.010040. Epub 2010/07/03.

    Article  CAS  PubMed  Google Scholar 

  28. Werling M, Vincent RP, Cross GF, Marschall HU, Fandriks L, Lonroth H, et al. Enhanced fasting and post-prandial plasma bile acid responses after Roux-en-Y gastric bypass surgery. Scand J Gastroenterol. 2013;48(11):1257–64. doi:10.3109/00365521.2013.833647. Epub 2013/09/21.

    Article  PubMed  Google Scholar 

  29. Ferslew BC, Xie G, Johnston CK, Su M, Stewart PW, Jia W, et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig Dis Sci. 2015;60(11):3318–28. doi:10.1007/s10620-015-3776-8. Epub 2015/07/04.

    Article  CAS  PubMed  Google Scholar 

  30. Lake AD, Novak P, Shipkova P, Aranibar N, Robertson D, Reily MD, et al. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease. Toxicol Appl Pharmacol. 2013;268(2):132-40. Epub 2013/02/09. doi: 10.1016/j.taap.2013.01.022. PubMed PMID: 23391614; PubMed Central PMCID: PMCPMC3627549.

  31. Bower G, Athanasiou T, Isla AM, Harling L, Li JV, Holmes E, et al. Bariatric surgery and nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2015;27(7):755–68. doi:10.1097/meg.0000000000000375. Epub 2015/04/29.

    Article  CAS  PubMed  Google Scholar 

  32. Wu Q, Zhang X, Zhong M, Han H, Liu S, Liu T, et al. Effects of bariatric surgery on serum bile acid composition and conjugation in a diabetic rat model. Obes Surg. 2016. Epub 2016/02/05. doi: 10.1007/s11695-016-2087-2

  33. Mencarelli A, Renga B, D’Amore C, Santorelli C, Graziosi L, Bruno A, et al. Dissociation of intestinal and hepatic activities of FXR and LXRalpha supports metabolic effects of terminal ileum interposition in rodents. Diabetes. 2013;62(10):3384-93. Epub 2013/07/10. doi: 10.2337/db13-0299. PubMed PMID: 23835330; PubMed Central PMCID: PMCPmc3781484.

  34. Kohli R, Kirby M, Setchell KD, Jha P, Klustaitis K, Woollett LA, et al. Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities. Am J Physiol Gastrointest Liver Physiol. 2010;299(3):G652-60. Epub 2010/07/03. doi: 10.1152/ajpgi.00221.2010. PubMed PMID: 20595624; PubMed Central PMCID: PMCPmc2950688.

  35. Tappenden KA. Intestinal adaptation following resection. JPEN J Parenter Enteral Nutr. 2014;38(1 Suppl):23s–31s. doi:10.1177/0148607114525210. Epub 2014/03/04.

    Article  PubMed  Google Scholar 

  36. Taqi E, Wallace LE, de Heuvel E, Chelikani PK, Zheng H, Berthoud HR, et al. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model. J Pediatr Surg. 2010;45(5):987–95. doi:10.1016/j.jpedsurg.2010.02.036. Epub 2010/05/05.

    Article  PubMed  Google Scholar 

  37. le Roux CW, Borg C, Wallis K, Vincent RP, Bueter M, Goodlad R, et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg. 2010;252(1):50–6. doi:10.1097/SLA.0b013e3181d3d21f. Epub 2010/06/22.

    Article  PubMed  Google Scholar 

  38. Myronovych A, Salazar-Gonzales R-M, Ryan KK, Miles L, Zhang W, Jha P, et al. The role of small heterodimer partner (SHP) in NAFLD improvement after vertical sleeve gastrectomy in mice. Obesity (Silver Spring). 2014;22(11):2301–11. doi:10.1002/oby.20890.

    Article  CAS  Google Scholar 

  39. Kohli R, Bradley D, Setchell KD, Eagon JC, Abumrad N, Klein S. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab. 2013;98(4):E708-12. Epub 2013/03/05. doi: 10.1210/jc.2012-3736. PubMed PMID: 23457410; PubMed Central PMCID: PMCPmc3615197.

  40. Sweeney TE, Morton JM. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA Surg. 2013;148(6):563–9. doi:10.1001/jamasurg.2013.5. Epub 2013/04/11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30(3):332-8. Epub 2014/03/15. doi: 10.1097/mog.0000000000000057. PubMed PMID: 24625896; PubMed Central PMCID: PMCPmc4215539.

  42. Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141(5):1773–81. doi:10.1053/j.gastro.2011.07.046. Epub 2011/08/16.

    Article  CAS  PubMed  Google Scholar 

  43. Flynn CR, Albaugh VL, Cai S, Cheung-Flynn J, Williams PE, Brucker RM, et al. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat Commun. 2015;6:7715. Epub 2015/07/22. doi: 10.1038/ncomms8715. PubMed PMID: 26197299; PubMed Central PMCID: PMCPmc4518285.

  44. Aron-Wisnewsky J, Dore J, Clement K. The importance of the gut microbiota after bariatric surgery. Nat Rev Gastroenterol Hepatol. 2012;9(10):590–8. doi:10.1038/nrgastro.2012.161. Epub 2012/08/29.

    Article  PubMed  Google Scholar 

  45. Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Konigsrainer A, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015:806248. Epub 2015/02/25. doi: 10.1155/2015/806248. PubMed PMID: 25710027; PubMed Central PMCID: PMCPMC4330959.

  46. Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol. 2012;13:213–24. England.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Duboc H, Taché Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis. 2014;46(4):302–12. doi:10.1016/j.dld.2013.10.021.

  48. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409–39. United States.

    Article  CAS  PubMed  Google Scholar 

  49. Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329:386–90. United States.

    Article  CAS  PubMed  Google Scholar 

  50. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167-77. Epub 2009/09/03. doi: 10.1016/j.cmet.2009.08.001. PubMed PMID: 19723493; PubMed Central PMCID: PMCPmc2739652.

  51. Adrian TE, Gariballa S, Parekh KA, Thomas SA, Saadi H, Al Kaabi J, et al. Rectal taurocholate increases L cell and insulin secretion, and decreases blood glucose and food intake in obese type 2 diabetic volunteers. Diabetologia. 2012;55(9):2343–7. doi:10.1007/s00125-012-2593-2. Epub 2012/06/15.

    Article  CAS  PubMed  Google Scholar 

  52. Patti ME, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17(9):1671–7. doi:10.1038/oby.2009.102. Epub 2009/04/11.

    Article  CAS  Google Scholar 

  53. Cummings BP, Bettaieb A, Graham JL, Stanhope KL, Kowala M, Haj FG, et al. Vertical sleeve gastrectomy improves glucose and lipid metabolism and delays diabetes onset in UCD-T2DM rats. Endocrinology. 2012;153(8):3620-32. Epub 2012/06/22. doi: 10.1210/en.2012-1131. PubMed PMID: 22719048; PubMed Central PMCID: PMCPmc3404344.

  54. Thomas S, Schauer P. Bariatric surgery and the gut hormone response. Nutr Clin Pract. 2010;25:175–82. United States.

    Article  PubMed  Google Scholar 

  55. Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med. 2013;34(1):39–58. doi:10.1016/j.mam.2012.11.001. Epub 2012/11/20.

    Article  CAS  PubMed  Google Scholar 

  56. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–9. England.

    Article  CAS  PubMed  Google Scholar 

  57. Faria SL, Faria OP, Cardeal Mde A, de Gouvea HR, Buffington C. Diet-induced thermogenesis and respiratory quotient after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2012;8(6):797–802. doi:10.1016/j.soard.2012.06.008. Epub 2012/08/14.

    Article  PubMed  Google Scholar 

  58. Wilms B, Ernst B, Schmid SM, Thurnheer M, Schultes B. Enhanced thermic effect of food after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab. 2013;98:3776–84. United States.

    Article  CAS  PubMed  Google Scholar 

  59. Nestoridi E, Kvas S, Kucharczyk J, Stylopoulos N. Resting energy expenditure and energetic cost of feeding are augmented after Roux-en-Y gastric bypass in obese mice. Endocrinology. 2012;153:2234–44. United States.

    Article  CAS  PubMed  Google Scholar 

  60. Stylopoulos N, Hoppin AG, Kaplan LM. Roux-en-Y gastric bypass enhances energy expenditure and extends lifespan in diet-induced obese rats. Obesity. 2009;17(10):1839–47. doi:10.1038/oby.2009.207.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Das SK, Roberts SB, McCrory MA, Hsu LK, Shikora SA, Kehayias JJ, et al. Long-term changes in energy expenditure and body composition after massive weight loss induced by gastric bypass surgery. Am J Clin Nutr. 2003;78(1):22–30. Epub 2003/06/21.

    CAS  PubMed  Google Scholar 

  62. Tamboli RA, Hossain HA, Marks PA, Eckhauser AW, Rathmacher JA, Phillips SE, et al. Body composition and energy metabolism following Roux-en-Y gastric bypass surgery. Obesity (Silver Spring). 2010;18(9):1718–24. doi:10.1038/oby.2010.89.

    Article  CAS  Google Scholar 

  63. van Gemert WG, Westerterp KR, van Acker BA, Wagenmakers AJ, Halliday D, Greve JM, et al. Energy, substrate and protein metabolism in morbid obesity before, during and after massive weight loss. Int J Obes Relat Metab Disord. 2000;24(6):711–8. Epub 2000/07/06.

    Article  PubMed  Google Scholar 

  64. Cariou B, van Harmelen K, Duran-Sandoval D, van Dijk TH, Grefhorst A, Abdelkarim M, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem. 2006;281:11039–49. United States.

    Article  CAS  PubMed  Google Scholar 

  65. Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006;116(4):1102-9. Epub 2006/03/25. doi: 10.1172/jci25604. PubMed PMID: 16557297; PubMed Central PMCID: PMCPMC1409738.

  66. Dufer M, Horth K, Wagner R, Schittenhelm B, Prowald S, Wagner TF, et al. Bile acids acutely stimulate insulin secretion of mouse beta-cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes. 2012;61:1479–89. United States.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A. 2006;103(4):1006–11. doi:10.1073/pnas.0506982103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183–8. doi:10.1038/nature13135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bilz S, Samuel V, Morino K, Savage D, Choi CS, Shulman GI. Activation of the farnesoid X receptor improves lipid metabolism in combined hyperlipidemic hamsters. Am J Physiol Endocrinol Metab. 2006;290:E716–22. United States.

    Article  CAS  PubMed  Google Scholar 

  70. Fiorucci S, Cipriani S, Baldelli F, Mencarelli A. Bile acid-activated receptors in the treatment of dyslipidemia and related disorders. Prog Lipid Res. 2010;49:171–85. England: 2009 Elsevier Ltd.

    Article  CAS  PubMed  Google Scholar 

  71. Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113(10):1408-18. Epub 2004/05/18. doi: 10.1172/jci21025. PubMed PMID: 15146238; PubMed Central PMCID: PMCPMC406532.

  72. Myronovych A, Kirby M, Ryan KK, Zhang W, Jha P, Setchell KD, et al. Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner. Obesity (Silver Spring). 2014;22(2):390-400. Epub 2013/06/28. doi: 10.1002/oby.20548. PubMed PMID: 23804416; PubMed Central PMCID: PMCPmc3836901.

  73. Ryan KK, Kohli R, Gutierrez-Aguilar R, Gaitonde SG, Woods SC, Seeley RJ. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology. 2013;154(1):9-15. Epub 2012/11/28. doi: 10.1210/en.2012-1891. PubMed PMID: 23183168; PubMed Central PMCID: PMCPmc3529386.

  74. Karmali S, Brar B, Shi X, Sharma AM, de Gara C, Birch DW. Weight recidivism post-bariatric surgery: a systematic review. Obes Surg. 2013;23(11):1922–33. doi:10.1007/s11695-013-1070-4. Epub 2013/09/03.

    Article  PubMed  Google Scholar 

  75. Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613-9. Epub 2012/06/08. doi: 10.1210/en.2011-2145. PubMed PMID: 22673227; PubMed Central PMCID: PMCPmc3404349.

  76. Jansen PL, van Werven J, Aarts E, Berends F, Janssen I, Stoker J, et al. Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery. Dig Dis. 2011;29(1):48–51. doi:10.1159/000324128. Epub 2011/06/22.

    Article  PubMed  Google Scholar 

  77. Albaugh VL, Flynn CR, Cai S, Xiao Y, Tamboli RA, Abumrad NN. Early increases in plasma bile acids post Roux-en-Y gastric bypass are driven by insulin sensitizing, secondary bile acids. J Clin Endocrinol Metab. 2015:jc20152467. Epub 2015/07/22. doi: 10.1210/jc.2015-2467.

  78. Kir S, Kliewer SA, Mangelsdorf DJ. Roles of FGF19 in liver metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:139–44. United States.

    Article  CAS  PubMed  Google Scholar 

  79. Bhatnagar S, Damron HA, Hillgartner FB. Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J Biol Chem. 2009;284:10023–33. United States.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 2004;145:2594–603. United States.

    Article  CAS  PubMed  Google Scholar 

  81. Gerhard GS, Styer AM, Wood GC, Roesch SL, Petrick AT, Gabrielsen J, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care. 2013;36:1859–64. United States.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kohli R, Setchell KD, Kirby M, Myronovych A, Ryan KK, Ibrahim SH, et al. A surgical model in male obese rats uncovers protective effects of bile acids post-bariatric surgery. Endocrinology. 2013;154(7):2341-51. Epub 2013/04/18. doi: 10.1210/en.2012-2069. PubMed PMID: 23592746; PubMed Central PMCID: PMCPmc3689286.

  83. Dirksen C, Jorgensen NB, Bojsen-Moller KN, Kielgast U, Jacobsen SH, Clausen TR, et al. Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass. Int J Obes (Lond). 2013;37:1452–9. England.

    Article  CAS  Google Scholar 

  84. Scholtz S, Miras AD, Chhina N, Prechtl CG, Sleeth ML, Daud NM, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63:891–902. England.

    Article  PubMed  Google Scholar 

  85. Ashrafian H, Li JV, Spagou K, Harling L, Masson P, Darzi A, et al. Bariatric surgery modulates circulating and cardiac metabolites. J Proteome Res. 2014;13(2):570–80. doi:10.1021/pr400748f. Epub 2013/11/28.

    Article  CAS  PubMed  Google Scholar 

  86. Stefater MA, Sandoval DA, Chambers AP, Wilson–Pérez HE, Hofmann SM, Jandacek R, et al. Sleeve gastrectomy in rats improves postprandial lipid clearance by reducing intestinal triglyceride secretion. Gastroenterology. 2011;141(3):939–49. e4. doi:10.1053/j.gastro.2011.05.008.

  87. de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17(5):657-69. Epub 2013/04/23. doi: 10.1016/j.cmet.2013.03.013. PubMed PMID: 23602448; PubMed Central PMCID: PMCPmc3654004.

  88. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284(5418):1362–5. Epub 1999/05/21.

    Article  CAS  PubMed  Google Scholar 

  89. Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278:9435–40. United States.

    Article  CAS  PubMed  Google Scholar 

  90. Chen X, Lou G, Meng Z, Huang W. TGR5: a novel target for weight maintenance and glucose metabolism. Exp Diabetes Res. 2011;2011:853501. Epub 2011/07/15. doi: 10.1155/2011/853501. PubMed PMID: 21754919; PubMed Central PMCID: PMCPMC3132465.

  91. Li T, Chiang JY. Nuclear receptors in bile acid metabolism. Drug Metab Rev. 2013;45(1):145-55. Epub 2013/01/22. doi: 10.3109/03602532.2012.740048. PubMed PMID: 23330546; PubMed Central PMCID: PMCPMC3676171.

  92. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, et al. Vitamin D receptor as an intestinal bile acid sensor. Science. 2002;296:1313–6. United States.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine J. Steffen.

Ethics declarations

Conflict of Interest

Farnaz Fouladi, James E. Mitchell, and Joseph A. Wonderlich have no conflict of interest. Kristine J. Steffen has previous and current grant support from NIH. She also receives royalties from a previous contribution to UptoDate.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Does not apply.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouladi, F., Mitchell, J.E., Wonderlich, J. et al. The Contributing Role of Bile Acids to Metabolic Improvements After Obesity and Metabolic Surgery. OBES SURG 26, 2492–2502 (2016). https://doi.org/10.1007/s11695-016-2272-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-016-2272-3

Keywords

Navigation