Skip to main content

Advertisement

Log in

Bone Strength Is Preserved Following Bariatric Surgery

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

There is an increasing concern that bariatric surgery results in excessive bone loss as demonstrated by studies that use areal bone mineral density (aBMD) outcomes by dual energy X-ray absorptiometry (DXA). Thus, we explored the effect of bariatric surgery on bone mechanical strength.

Methods

Bone strength and body composition outcomes were measured in 21 adults (age 45.3 years; BMI 45.7 kg/m2) at baseline (pre-surgery) and 3, 6, and 12 months post-surgery. Bone geometry, density and strength were assessed by peripheral quantitative computed tomography (pQCT) at the distal (4 %) sites of the radius and tibia and at the midshaft sites of the tibia (66 %) and radius (50 %). Participants were divided into tertiles (high, medium, and low) of percentage weight loss at 6 months post-surgery.

Results

Participants in all three tertiles lost significant body weight by 6 months post-surgery (mean loss −5 to −30 %, all p < 0.05). At 6 months, all tertiles lost significant fat mass (−9 to −51 %, all p < 0.05), but only the high tertile lost significant fat-free mass (−8 %, p < 0.05). Despite a slight increase in tibia bone strength (SSIp) at 3 months (+1.1 %, p < 0.05), estimates of bone strength at the radius and tibia sites did not change at later post-surgical time points regardless of weight loss.

Conclusions

Contrary to DXA-based aBMD outcomes in the current literature, these results suggest that bone strength was preserved up to 12 months following bariatric surgery. Future longer-term studies exploring bone strength and geometry are needed to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008. Obes Surg. 2009;19(12):1605–11.

    Article  PubMed  Google Scholar 

  2. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.

    Article  CAS  PubMed  Google Scholar 

  3. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56. e245.

    Article  PubMed  Google Scholar 

  4. Goldner WS, O'Dorisio TM, Dillon JS, et al. Severe metabolic bone disease as a long-term complication of obesity surgery. Obes Surg. 2002;12(5):685–92.

    Article  PubMed  Google Scholar 

  5. Ensrud KE, Ewing SK, Stone KL, et al. Intentional and unintentional weight loss increase bone loss and hip fracture risk in older women. J Am Geriatr Soc. 2003;51(12):1740–7.

    Article  PubMed  Google Scholar 

  6. Ensrud KE, Fullman RL, Barrett-Connor E, et al. Voluntary weight reduction in older men increases hip bone loss: the osteoporotic fractures in men study. J Clin Endocrinol Metab. 2005;90(4):1998–2004.

    Article  CAS  PubMed  Google Scholar 

  7. Langlois JA, Mussolino ME, Visser M, et al. Weight loss from maximum body weight among middle-aged and older white women and the risk of hip fracture: the NHANES I epidemiologic follow-up study. Osteoporos Int. 2001;12(9):763–8.

    Article  CAS  PubMed  Google Scholar 

  8. Scibora LM, Ikramuddin S, Buchwald H, et al. Examining the link between bariatric surgery, bone loss, and osteoporosis: a review of bone density studies. Obes Surg. 2012;22(4):654–67.

    Article  PubMed  Google Scholar 

  9. Laskey MA, Lyttle KD, Flaxman ME, et al. The influence of tissue depth and composition on the performance of the Lunar dual-energy X-ray absorptiometer whole-body scanning mode. Eur J Clin Nutr. 1992;46(1):39–45.

    CAS  PubMed  Google Scholar 

  10. Jebb SA, Goldberg GR, Elia M. DXA measurements of fat and bone mineral density in relation to depth and adiposity. Basic Life Sci. 1993;60:115–9.

    CAS  PubMed  Google Scholar 

  11. Madsen OR, Jensen JE, Sorensen OH. Validation of a dual energy X-ray absorptiometer: measurement of bone mass and soft tissue composition. Eur J Appl Physiol Occup Physiol. 1997;75(6):554–8.

    Article  CAS  PubMed  Google Scholar 

  12. Yu EW, Thomas BJ, Brown JK, et al. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Min Res. 2012;27(1):119–24.

    Article  Google Scholar 

  13. Gould J, Ellsmere J, Fanelli R, et al. Panel report: best practices for the surgical treatment of obesity. Surg Endosc. 2011;25(6):1730–40.

    Article  CAS  PubMed  Google Scholar 

  14. Das SK, Roberts SB, Kehayias JJ, et al. Body composition assessment in extreme obesity and after massive weight loss induced by gastric bypass surgery. Am J Physiol Endocrinol Metab. 2003;284(6):E1080–1088.

    CAS  PubMed  Google Scholar 

  15. Das SK. Body composition measurement in severe obesity. Curr Opin Clin Nutr Metab Care. 2005;8(6):602–6.

    Article  PubMed  Google Scholar 

  16. Smock AJ, Hughes JM, Popp KL, et al. Bone volumetric density, geometry, and strength in female and male collegiate runners. Med Sci Sports Exerc. 2009;41(11):2026–32.

    Article  PubMed  Google Scholar 

  17. Uusi-Rasi K, Rauhio A, Kannus P, et al. Three-month weight reduction does not compromise bone strength in obese premenopausal women. Bone. 2010;46(5):1286–93.

    Article  PubMed  Google Scholar 

  18. Uusi-Rasi K, Sievanen H, Kannus P, et al. Influence of weight reduction on muscle performance and bone mass, structure and metabolism in obese premenopausal women. J Musculoskelet Neuronal Interact. 2009;9(2):72–80.

    CAS  PubMed  Google Scholar 

  19. Ciangura C, Bouillot JL, Lloret-Linares C, et al. Dynamics of change in total and regional body composition after gastric bypass in obese patients. Obesity. 2010;18(4):760–5.

    Article  PubMed  Google Scholar 

  20. Carey DG, Pliego GJ, Raymond RL. Body composition and metabolic changes following bariatric surgery: effects on fat mass, lean mass and basal metabolic rate: six months to one-year follow-up. Obes Surg. 2006;16(12):1602–8.

    Article  PubMed  Google Scholar 

  21. Coupaye M, Bouillot JL, Poitou C, et al. Is lean body mass decreased after obesity treatment by adjustable gastric banding? Obes Surg. 2007;17(4):427–33.

    Article  PubMed  Google Scholar 

  22. Mahdy T, Atia S, Farid M, et al. Effect of Roux-en Y gastric bypass on bone metabolism in patients with morbid obesity: Mansoura experiences. Obes Surg. 2008;18(12):1526–31.

    Article  PubMed  Google Scholar 

  23. Johnson JM, Maher JW, Samuel I, et al. Effects of gastric bypass procedures on bone mineral density, calcium, parathyroid hormone, and vitamin D. J Gastrointest Surg. 2005;9(8):1106–10. discussion 1110-1101.

    Article  PubMed  Google Scholar 

  24. Fleischer J, Stein EM, Bessler M, et al. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab. 2008;93(10):3735–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vilarrasa N, Gomez JM, Elio I, et al. Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg. 2009;19(7):860–6.

    Article  PubMed  Google Scholar 

  26. Frost HM. Bone's mechanostat: a 2003 update. Anat Rec A: Discov Mol Cell Evol Biol. 2003;275(2):1081–101.

    Article  Google Scholar 

  27. Wetzsteon RJ, Petit MA, Macdonald HM, et al. Bone structure and volumetric BMD in overweight children: a longitudinal study. J Bone Min Res. 2008;23(12):1946–53.

    Article  Google Scholar 

  28. Petit MA, Beck TJ, Hughes JM, et al. Proximal femur mechanical adaptation to weight gain in late adolescence: a six-year longitudinal study. J Bone Min Res. 2008;23(2):180–8.

    Article  Google Scholar 

  29. Beck TJ, Petit MA, Wu G, et al. Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the Women's Health Initiative observational study. J Bone Min Res. 2009;24(8):1369–79.

    Article  Google Scholar 

  30. Wu S, Lei SF, Chen XD, et al. The contributions of lean tissue mass and fat mass to bone geometric adaptation at the femoral neck in Chinese overweight adults. Ann Hum Biol. 2007;34(3):344–53.

    Article  PubMed  Google Scholar 

  31. Travison TG, Araujo AB, Esche GR, et al. Lean mass and not fat mass is associated with male proximal femur strength. J Bone Min Res. 2008;23(2):189–98.

    Article  Google Scholar 

  32. Chaston TB, Dixon JB, O'Brien PE. Changes in fat-free mass during significant weight loss: a systematic review. Int J Obes (Lond). 2007;31(5):743–50.

    CAS  Google Scholar 

  33. Carrasco F, Ruz M, Rojas P, et al. Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg. 2008;19(1):41–6.

    Article  PubMed  Google Scholar 

  34. Bond DS, Evans RK, DeMaria E, et al. Physical activity and quality of life improvements before obesity surgery. Am J Health Behav. 2006;30(4):422–34.

    Article  PubMed  Google Scholar 

  35. Bond DS, Phelan S, Wolfe LG, et al. Becoming physically active after bariatric surgery is associated with improved weight loss and health-related quality of life. Obesity. 2009;17(1):78–83.

    Article  PubMed  Google Scholar 

  36. Bond DS, Jakicic JM, Unick JL, et al. Pre- to postoperative physical activity changes in bariatric surgery patients: self report vs. objective measures. Obesity. 2010;18(12):2395–7.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Coates PS, Fernstrom JD, Fernstrom MH, et al. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab. 2004;89(3):1061–5.

    Article  CAS  PubMed  Google Scholar 

  38. Giusti V, Gasteyger C, Suter M, et al. Gastric banding induces negative bone remodelling in the absence of secondary hyperparathyroidism: potential role of serum C telopeptides for follow-up. Int J Obes (Lond). 2005;29(12):1429–35.

    Article  CAS  Google Scholar 

  39. Inge T, Wilson KA, Gamm K, et al. Preferential loss of central (trunk) adiposity in adolescents and young adults after laparoscopic gastric bypass. Surg Obes Relat Dis. 2007;3(2):153–8.

    Article  PubMed  Google Scholar 

  40. Bolotin HH. DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone. 2007;41(1):138–54.

    Article  CAS  PubMed  Google Scholar 

  41. Yu EW, Bouxsein M, Roy AE, Baldwin C, Cange A, Neer RM, Kaplan LM, Finkelstein JS. Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Min Res. 2013; Aug 8. doi: 10.1002/jbmr.2063.

Download references

Conflict of Interest

Dr. Scibora and Dr. Petit received grant support from the Minnesota Obesity Consortium. Dr. Buchwald, Dr. Hughes, and Dr. Ikramuddin declare no conflict of interest.

Grant Funding

This project was supported by a grant from the Minnesota Obesity Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley M. Scibora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scibora, L.M., Buchwald, H., Petit, M.A. et al. Bone Strength Is Preserved Following Bariatric Surgery. OBES SURG 25, 263–270 (2015). https://doi.org/10.1007/s11695-014-1341-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-014-1341-8

Keywords

Navigation