Skip to main content
Log in

Relationship between heat/mass transfer and color change during drying process

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Relationship between heat/mass transfer and color change during the drying process of Radix Paeoniae Alba (RPA) slice was studied. The results show that drying temperature and moisture content are the main factors affecting the color of the sample. The lightness value (L) decreases as the moisture content decreases, while the red-green value (a) and yellow-blue value (b) increase with the decrease in moisture content. The higher the temperature, the lower the L, while the higher a and b, and the greater the total color difference (∆E). The total color difference values at 60 °C, 80 °C and 100 °C were 5.58, 6.99 and 9.05, respectively. Based on the moisture change, a model coupling heat/mass transfer and color change was presented to illustrate the results during the drying process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.R.I. Shishir, N. Karim, T. Bao, V. Gowd, T. Ding, C. Sun, W. Chen, Cold plasma pretreatment–a novel approach to improve the hot air drying characteristics, kinetic parameters, and nutritional attributes of shiitake mushroom. Drying Technol. 38, 2134–2150 (2020). https://doi.org/10.1080/07373937.2019.1683860

    Article  CAS  Google Scholar 

  2. S.-H.M. Ashtiani, M. Rafiee, M.M. Morad, M. Khojastehpour, M. Khani, A. Rohani, B. Shokri, A. Martynenko, Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innov. Food Sci. Emerg. Technol. (2020). https://doi.org/10.1016/j.ifset.2020.102381

    Article  Google Scholar 

  3. S.-H.M. Ashtiani, M. Rafiee, M.M. Morad, A. Martynenko, Cold plasma pretreatment improves the quality and nutritional value of ultrasound-assisted convective drying: the case of goldenberry. Drying Technol. (2022). https://doi.org/10.1080/07373937.2022.2050255

    Article  Google Scholar 

  4. S.R. Shewale, D. Rajoriya, M.L. Bhavya, H.U. Hebbar, Application of radiofrequency heating and low humidity air for sequential drying of apple slices: process intensification and quality improvement. LWT-Food Sci. Technol. 135, 109904 (2021). https://doi.org/10.1016/j.lwt.2020.109904

    Article  CAS  Google Scholar 

  5. Z.T. Yang, F.W. Li, Z.H. Wang, X.Y. Zhang, J.R. Cao, Y. Zhang, Food color evaluation and application in food industry. Sci. Technol. Food Industry 42(24), 417–423 (2020)

    Google Scholar 

  6. S.-H.M. Ashtiani, B. Sturm, A. Nasirahmadi, Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices. Heat Mass Transf. 54, 915–927 (2018). https://doi.org/10.1007/s00231-017-2187-0

    Article  CAS  Google Scholar 

  7. X.H. Yang, L.Z. Deng, A.S. Mujumdar, H.W. Xiao, Q. Zhang, Z. Kan, Evolution and modeling of colour changes of red pepper (Capsicum annuum L.) during hot air drying. J. Food Eng. 231, 101–108 (2018). https://doi.org/10.1016/j.jfoodeng.2018.03.013

    Article  Google Scholar 

  8. X. Li, X. Wu, J. Bi, X. Liu, X. Li, C. Guo, Polyphenols accumulation effects on surface color variation in apple slices hot air drying process. LWT -Food Sci. Technol. 108, 421–428 (2019). https://doi.org/10.1016/j.lwt.2019.03.098

    Article  CAS  Google Scholar 

  9. K. Li, M. Zhang, A.S. Mujumdar, B. Chitrakar, Recent developments in physical field-based drying techniques for fruits and vegetables. Drying Technol. 37(15), 1954–1973 (2019). https://doi.org/10.1080/07373937.2018.1546733

    Article  CAS  Google Scholar 

  10. T.V.L. Nguyen, P.B.D. Nguyen, X.C. Luu, B.L. Huynh, S. Krishnan, P.T. Huynh, Kinetics of nutrient change and color retentionduring low-temperature microwave-assisted drying of bitter melon (Momordica charantia L.). J. Food Process. Preserv. 43(12), e14279 (2019). https://doi.org/10.1111/jfpp.14279

    Article  CAS  Google Scholar 

  11. M. Aamir, W. Boonsupthip, Effect of microwave drying on quality kinetics of okra. J. Food Sci. Technol. 54(5), 1239–1247 (2017). https://doi.org/10.1007/s13197-017-2546-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. L.J. Ma, Z. Li, R. Zhang, Q. Cui, D. Zheng, T. Cao, Q. Liu, Study on the relationship between color and chemical components in different positions of tobacco leaves during curing process. Tianjin Agric. Sci. 24(09), 60–64 (2018)

    Google Scholar 

  13. C. Song, C. Liu, J. Chen, Relationship between heat/mass transfer and ingredient degradation during drying process. J. Food Process Eng. (2021). https://doi.org/10.1111/jfpe.13917

    Article  Google Scholar 

  14. R. Li, C. Liu, C. Zhang, J. Shen, L. Wang, C. Jia, Moisture transformation and transport during the drying process for Radix Paeoniae Alba slices. Appl. Therm. Eng. 110, 25–31 (2017). https://doi.org/10.1016/j.applthermaleng.2016.08.123

    Article  Google Scholar 

  15. M.Z. Islam, T. Saha, K. Monalisa, M.M. Hoque, Effect of starch edible coating on drying characteristics and antioxidant properties of papaya. J. Food Meas. Charact. 13, 2951–2960 (2019). https://doi.org/10.1007/s11694-019-00215-3

    Article  Google Scholar 

  16. Y. Men, Y. Ma, H. Yu, X. Lei, H. Long, Z. Liao, G. Lv, Correlation between various processing methods and quality of Paeoniae Radix Alba. Chin. Herbal Med. 51(08), 2214–2220 (2020)

    Google Scholar 

  17. H. Bozkir, Effects of hot air, vacuum infrared, and vacuum microwave dryers on the drying kinetics and quality characteristics of orange slices. J. Food Process Eng. 43(10), e13485 (2020). https://doi.org/10.1111/jfpe.13485

    Article  CAS  Google Scholar 

  18. Z.W. Wu, Y.C. Wu, L. Wang, L. Zhang, Effect of different drying methods on six chemical components of Paeoniae Radix Alba. Nat. Prod. Res. Dev. 28(11), 1764–1770 (2016)

    Google Scholar 

  19. Y.X. Zhou, X.H. Gong, H. Zhang, C. Peng, A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomed. Pharmacother. 130, 110505 (2020). https://doi.org/10.1016/j.biopha.2020.110505

    Article  CAS  PubMed  Google Scholar 

  20. J. Gao, J. Hu, D. Hu, X. Yang, A role of gallic acid in oxidative damage diseases: a comprehensive review. Nat. Prod. Commun. (2019). https://doi.org/10.1177/1934578X19874174

    Article  Google Scholar 

  21. K. Sharma, S.S. Bari, H.P. Singh, Biotransformation of tea catechins into theaflavins with immobilized polyphenol oxidase. J. Mol. Catal. B 56(4), 253–258 (2009). https://doi.org/10.1016/j.molcatb.2008.05.016

    Article  CAS  Google Scholar 

  22. P.P. Tripathy, S. Kumar, A methodology for determination of temperature dependent mass transfer coefficients from drying kinetics: application to solar drying. J. Food Eng. 90(2), 212–218 (2009)

    Article  Google Scholar 

  23. M. Özdemir, Y.O. Devres, The thin layer drying characteristics of hazelnuts during roasting. J. Food Eng. 42(4), 225–233 (1999). https://doi.org/10.1016/S0260-8774(99)00126-0Sharma

    Article  Google Scholar 

  24. H. Yang, Q. Wu, Y.N. Li, S. Wang, Effects of vacuum impregnation with calcium lactate and pectin methylesterase on quality attributes and chelate-soluble pectin morphology of fresh-cut papayas. Food Bioprocess Technol. (2017). https://doi.org/10.1007/s11947-017-1874-7

    Article  Google Scholar 

  25. E. Horuz, H. Bozkurt, H. Karatas, M. Maskan, Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics, total phenolics, antioxidant capacity, vitamin c, color and rehydration capacity of sour cherries. Food Chem. 230(SEP.1), 295–305 (2017)

    Article  CAS  Google Scholar 

  26. I. Alibas, Determination of drying parameters, ascorbic acid contents and color characteristics of nettle leaves during microwave, air, and combined microwave-air-drying. J. Food Process Eng. 33, 213–233 (2008). https://doi.org/10.1111/j.1745-4530.2008.00268.x

    Article  Google Scholar 

Download references

Acknowlegements

The authors are grateful for the supports of the National Natural Science Foundation of China (No. 52150410432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanping Liu.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Song, C., ElGamal, R. et al. Relationship between heat/mass transfer and color change during drying process. Food Measure 16, 4151–4160 (2022). https://doi.org/10.1007/s11694-022-01497-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01497-w

Keywords

Navigation